Task 6: Energy Supply, Distribution and Conservation

Prepared for: Broward County Aviation Department

Fort Lauderdale, Florida

September 25, 2007

~~ Task 6: Energy Supply, Distribution and Conservation ~~

Clean Airport Partnership, Inc.

Task 6: Energy Supply, Distribution and Conservation

Prepared for

Broward County Aviation Department

Ft. Lauderdale, Florida

Prepared by

Clean Airport Partnership, Inc. Environmental Consulting Group, Inc. Johnson Controls, Inc.

September 25, 2007

Final Report

~~ Task 6: Energy Supply, Distribution and Conservation ~~

Clean Airport Partnership, Inc.

Table of Contents

1.	EX	ECUTIVE SUMMARY	3
	1.1.	Purpose	3
	1.2.	Scope	3
	1.3.	Findings Summary	3
	1.4.	Recommendations Summary	7
2.	RE	VIEW OF ENERGY BILLS AND CONSUMPTION AT FLL	9
	2.1.	Introduction	9
	2.2.	Annual Electric Cost	9
	2.3.	Annual Electric Consumption and Breakdown	10
3.	PAS	ST AND CURRENT ENERGY RELATED PROJECTS AT FLL	11
	3.1.	Introduction	11
	3.2.	Lighting Retrofits	11
	3.3.	Rooftop Air Handling Unit (AHU) Replacement	11
	3.4.	Building Automation System Upgrade Project	11
	3.5.	Chilled Water Plant Renovation Project	11
4.	LE	ED FOR NEW CONSTRUCTION AND EXISTING BUILDINGS AT FLL	13
	4.1.	LEED Application at FLL	13
	4.2.	LEED Background	13
	4.3.	Building Green the Smart Thing to Do	14
	4.4.	Integration the Path to Green Returns	15
5.	CEI	NTRAL ENERGY PLANT, CHILLED WATER PRODUCTION AND DISTRIBUTION AT FLL	17
	5.1.	Introduction	17
	5.2.	Existing Chilled Water Plants	17
	5.3.	Recommendations	20
6.	En	ERGY SUPPLY MEASURES AT FLL	27
	6.1.	Consolidate Numerous Electric Meters	27
	6.2.	Peak Shaving Using Existing Emergency Generators	28
	6.3.	Conversion to Natural Gas	28
7.	LIC	HTING AT FLL	30
	7.1.	Lighting Audit Scope	30
	7.2.	Lighting Audit Findings and Recommendations	30
	7.3.	Lighting Operating Hours and Logger Data	32
	7.4.	Potential Lighting Project Savings	33
	7.5.	Garage Light Levels and Potential Liability Issues	35

6.	High Efficiency LED Runway Lighting					
7.	Tenant Vendor Spaces and Metering					
Отн	IER HVAC SYSTEMS AT FLL					
1.	Eliminate Inefficient Electric Boilers in Terminal 1					
2.	Convert Hibiscus Garage to Variable Volume Pumping					
3.	Turn Off Additional HVAC Equipment at Night					
4.	Expand Demand Ventilation Control Using CO2 Sensors	41				
5.	Pump Impeller Trimming					
Ren	IEWABLE ENERGY AND OTHER TECHNOLOGIES AT FLL					
1.	Automatic Shutdown of Escalators and Moving Walkways					
2.	Domestic Water Booster Systems					
3.	Common Use Systems					
4.	Renewable Energy Sources					
4.1.	Photovoltaic Power Generation					
4.2.	Daylight Harvesting					
4.3.	Fuel Cell Power Generation					
5.	Combined Heat and Power	55				
С	ONTROL SYSTEM UTILIZATION AND OPTIMIZATION AT FLL	61				
0.1.	VAV AHU Optimization					
<i>).2.</i>	Variable Speed Pump Optimization	63				
).3.	Retro-Commissioning	65				
ENDE	X A – HVAC DATA	67				
1.	Central Plant Analysis Data	67				
2.	HVAC Log Data	67				
ENDE	X B – LIGHTING DATA	67				
1.	Lighting Audit Data	67				
2.	Lighting System Log Data	67				
Appendix C – Photovoltaic Data						
1.	Photovoltaic Project Data Option 1	67				
2.	Photovoltaic Project Data Option 2	67				
	7. OTH 2. 3. 4. 5. REN 2. 3. 4. 4. 2. 4. 4. 2. 5. C 4. 2. 2. NDI 1. 2. NDI 1. 2. 2. NDI 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 3. 4. 3. 4. 5. 5. 5. 7. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	 7. Tenant Vendor Spaces and Metering				

ARTICLE I. ACRONYMS

A/C - Air-conditioning

AHU - Air Handling Unit

- BAS Building Automation System
- BCAD Broward County Aviation Department
- CAP Clean Airport Partnership, Inc.
- CCF Hundred Cubic Feet
- CFC Chlorofluorocarbon
- CHP Combined Heat and Power
- CO Carbon Monoxide
- CO2 Carbon Dioxide
- CUP Central Utility Plant
- DCWP Distributed Chilled Water Plant
- DOE Department Of Energy
- DX Direct Expansion
- ECM Energy Conservation Measure
- EFLH Equivalent Full Load Hours
- EMCS Energy Management Control System
- EPA US Environmental Protection Agency
- EU European Union
- FC Fuel Cell
- FLL Ft. Lauderdale-Hollywood International Airport
- FPL Florida Power and Light
- HCFC Hydro chlorofluorocarbon
- HID High Intensity Discharge
- HPS High Pressure Sodium
- HRHWG Heat Recovery Hot Water Generator
- HRSG Heat Recovery Steam Generator
- HVAC Heating Ventilation and Air Conditioning
- KW Kilowatt
- KWH Kilowatt Hour
- LEED Leadership in Energy and Environmental Design
- LEED CI LEED for Commercial Interiors
- LEED CS LEED for Core and Shell

LEED EB - LEED for Existing Buildings

LEED NC - LEED for New Construction

MAC - Midwest CHP Application Center

MH - Metal Halide

MRI - Midwest Research Institute

MW - Mega Watt

NASA - National Aeronautics and Space Administration

NOx - Nitrogen Oxides

NRCan - Natural Resources Canada

NREL- National Renewable Energy Laboratory

OES - Broward County Office of Environmental Services

PSID - Pounds per Square Inch Differential

PV - Photovoltaic

RCC - Rental Car Center

SAM - Solar Advisor Model

SFWMD - South Florida Water Management District

SOx - Sulfur Oxides

SPB - Simple Payback

SPLV - System Part Load Value

T/E - Thermal-to-Electric

TES - Thermal Energy Storage

URS -

USA - United States of America

USCHPA - U.S. Combined Heat and Power Association

USGBC - U.S. Green Building Council

VAV - Variable Air Volume

VFD - Variable Frequency Drive

VSCCP - Variable Speed Centrifugal Chiller Plants

1. Executive Summary

1.1. Purpose

The purpose of this report is to evaluate energy supply, distribution and conservation at FLL. Recommendations are made considering practical, technical, economic and environmental factors associated with the various measures considered.

1.2. Scope

The analysis included those major facilities for which BCAD has maintenance and operational responsibility. Utilities that are consumed and billed directly to tenants are not included in this analysis.

Although the original scope was limited to the evaluation of the top two renewable and conservation opportunities, Johnson Controls expanded the scope to include the evaluation of a number of additional opportunities. In addition, renewable and conservation opportunities are both included in this single report. These scope modifications resulted in a more comprehensive and holistic evaluation. The level of effort provided for opportunities for conserving energy was significantly higher than for renewables. Johnson Controls decision to put more detail in the opportunities to conserve energy was based upon input from BCAD staff.

Regarding recommendations and the measures that should be pursued and implemented, it was felt that Johnson Controls role is more to provide economic and technical information. The economic criteria, such as acceptable payback, and the desirability of including some renewables, that may not have a short payback, but will help make the overall project more "green", is BCAD's decision.

1.3. Findings Summary

FLL energy consumption and costs are almost exclusively for electricity. Annual electric costs for period ending June 2005 were \$6,315,000 and the associated electric energy consumption was 83,000,000 kilo-watt hours (KWH). The electric consumption was estimated to be approximately 40% lighting, 40% heating, ventilating and air-conditioning (HVAC) equipment and 20% other (escalators, conveyor belts, power to aircraft, business and computer equipment, etc.).

FLL BCAD staff have done a good job and implemented a number of upgrade projects for the facilities that were constructed in years past when today's energy efficient technologies were not available. However, they are aware of additional opportunities but have been very limited in available resources for energy focused projects. Based upon discussions with BCAD staff and the performance of comprehensive surveys of the facilities, a large number of energy conservation measure (ECM) opportunities were identified that will result in significant energy savings.

The estimated savings, cost and positive environmental impact associated with each major ECM category may be found on the following page. The lighting systems, many of which still use older technology and do not perform very well, were found to have a large opportunity for improved efficiency, energy savings and the potential to significantly improve quality of the building environment.

ECM No.	Found in Report Section	ECM Category Description	Estimated Energy Cost Savings Range (% of Total)	Estimated Cost to Implement \$ ⁽⁴⁾	Estimat ed Simple Payback Range (Years)
1	7	Lighting ⁽³⁾	8 to 11	3,000,000 (4)	5
2	5	Interconnect Chilled Water Plant(s)	2 to 4	1,200,000 ^(2, 4)	14 (2)
		Subtotal		4,200,000 (4)	
3	6	Supply Side	0 to 4 ⁽¹⁾	1,000,000 (4)	8
4	8 & 10	Other HVAC Systems and Retro-Cx	1 to 5	1,250,000 (4)	5
5	9.1, 9.2, 9.3	Other (Excluding Renewables)	0 to 2	750,000 ⁽⁴⁾	8
		Total All Categories	11 to 22	\$7,200,000 ⁽⁴⁾	7

ECM Estimated Impact and Simple Payback Summary

(1) Supply side measures would generally not save energy but would reduce costs.

(2) Interconnecting chilled water plants would improve system efficiency and redundancy.

(3) Lighting estimate excludes runway and tenant/vendor space lighting.

(4) The cost estimate for ECM Numbers 1 and 2 were the result of detailed surveys and cost estimates based upon a firm proposed scope of work. However, the exact scope of work that would be implemented

for ECM Numbers 3, 4 and 5 was not as well defined and their associated cost estimates are based primarily upon the data available at the time and Johnson Control's experience in implementing similar ECMs on prior projects.

The top two energy conservation opportunities/recommendations, considering both economic benefit and intangible benefits such as improved chilled water system redundancy, were felt to be:

- 1. Retro-fitting lighting systems as described in Section 7. The scope of the proposed lighting project includes all 4 terminals, Cypress, Hibiscus, Palm, BCAD Building North and South, Facilities, URS and the West Maintenance facilities. Proposed lighting project details may be found in Section 7 and in Appendix B.1, Lighting Audit Data. The appendix data contains detailed information on the existing lighting fixtures in each space in each building along with the proposed upgrades. At an estimated project cost of \$3,000,000 and annual savings of \$600,000, a simple payback of 5 years would result. The \$3,000,000 estimate does not include any runway or tenant vendor lighting retro-fits.
- 2. Interconnect existing chilled water plants into a new chilled water loop that might be installed within the elevated road structure that connects the terminals. This might be implemented as a separate project or perhaps as a part of a new construction project. This would result in a distributed chilled water plant system consisting of perhaps 2 or 3 plants with phasing out of the older, smaller and less efficient Terminal 4 plant. This would greatly improve system redundancy and would improve overall system efficiency (most efficient plants and chillers would be loaded first). This recommendation is detailed in Section 5.3 and is significantly more economical than a single new central chilled water plant. However, a new chilled water plant might be constructed as a part of a major new construction project. It is anticipated that any new chilled water plant would be interconnected as well and supplement existing plants that remain. A new interconnecting chilled water loop with an estimated project cost of \$1,200,000 and annual savings of \$86,600 would have a simple payback of 13.6 years.

Several renewables were evaluated and the top two renewable opportunities were felt to be:

- 1. Thin-Film Photovoltaic (PV) Technology integrated into re-roofing projects or new construction roofs as described in Section 9.4.1, Photovoltaic Power Generation, Option 2. Detailed economic data is provided in the referenced section for a proposed project that would utilize 500,000 square feet of roof and generate 1.5 MegaWatt of electric power.
- 2. Daylight harvesting is a renewable with a relatively large number of individual opportunities with a wide range in size and payback. Daylight harvesting is detailed in Section 9.4.2. In its simplest application, a photocell switch can be used to turn off unnecessary lights, particularly outdoors, during daylight hours. Simple photo-cell switch applications can have a payback of one year or less. When

applied indoors, controls may be installed that sense the amount of light in the space and automatically either turn some lights off or automatically dim lights so the light in the space remains relatively constant. The simple payback on these more sophisticated interior day lighting systems can vary from approximately 4 years when applied in new construction projects to 8 years or longer when applied to retrofitting existing spaces. Some specific opportunities are noted in Section 9.4.2.

Bottom Line Economic Estimate:

Implementation of a comprehensive energy focused project for the existing facilities that included all ECM Categories in the prior Summary Table could generate electric savings of approximately 18% or \$1,100,000 per year (15,000,000 KWH). The project is estimated to have a cost of about \$7,200,000 for a simple payback of about 7 years.

However, it should be noted that smaller projects could be put together that would only include those items that have a relatively short payback. For example, it is anticipated that a scaled back project totaling approximately \$2,000,000 and having a simple payback of 3 to 4 years could be implemented if desired.

Bottom Line Environmental Impact Estimate:

A summary of the existing and future environmental footprint of FLL from implementing a comprehensive energy focused project that saved 15,000,000 KWH (the large \$7,200,000 project previously described) follows:

Pollutant	Emission Factor	Pollutant Equivalent	Existing 83.5 x 10 ⁶ KWH	Future 68.5 x 10 ⁶ KWH	Reduction 15 x 10 ⁶ KWH
CO2	.59	pounds of carbon dioxide	49,153,000	40,305,000	8,848,000
S02	.46	pounds of sulfur dioxide	177,000	145,000	32,000
NOx	.96	pounds of nitrogen dioxide	460,000	377,000	83,000

(1) The positive environmental impact from reducing electric consumption at FLL is based upon the Florida Power and Light fuel mixture and details may be found in the Baseline Report.

Renewable energy sources, including solar and fuel cell technologies, were evaluated and were generally found to have relatively long paybacks. However, a possible exception is a newly developed application of thin-film photovoltaic technology in an integrated roofing system. When this approach is coupled with a developing financial market that allows the federal tax and depreciation incentives for solar technologies to be brought to the public sector, a large photovoltaic project might be included in FLL re-roofing projects for a very short payback.

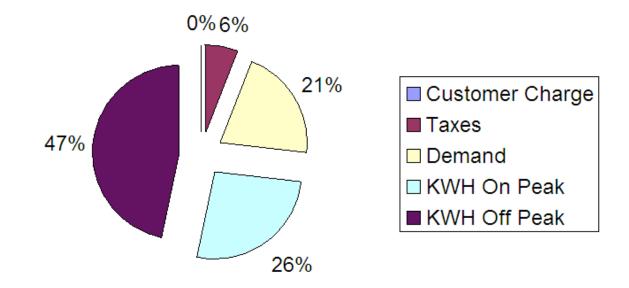
1.4. Recommendations Summary

Recommendations include the following:

- BCAD should select a Commissioning Agent as soon as possible that will be used on all future new and renovation construction projects. The Commissioning Agent should be a part of the team from the inception of a project. The same Commissioning Agent should be used to help ensure standardization and consistent goals even when the architect and engineer for specific projects are different.
- Consider having all new FLL construction be designed in accordance with LEED New Construction to help ensure environmentally sound design and construction. As an example,

daylight harvesting, a measure advocated by LEED, should be incorporated into new design and construction.

- 3. Implement the proposed chilled water plant renovation project for Terminals 3 and 4 that already has design drawings prepared. However, certain efficiency upgrades, that can be supported by a life cycle cost analysis and are estimated to cost \$660,000 with a 4.8 year simple payback, are recommended.
- 4. Interconnect existing chilled water plants into a new chilled water loop that might be installed within the elevated road structure that connects the terminals. This might be implemented as part of a new construction project or a separate retro-fit project as follows.
- 5. Consider implementing an energy and environmental focused retrofit project that would include comprehensive lighting upgrades as a stand alone project or as part of a new construction project. The exact scope would be dependent upon BCAD financial criteria and non-economic goals.
- Consider implementing thin film photovoltaic technology in an integrated roofing system on future re-roofing projects and new construction projects at FLL.


2. Review of Energy Bills and Consumption at FLL

2.1. Introduction

FLL BCAD and tenant facilities are provided electric and natural gas service. However, BCAD facilities are provided electric service only. Many tenant spaces such as Chili's restaurant are provided with separate electric and natural gas services and the tenants are billed directly by the utility companies.

2.2. Annual Electric Cost

FLL BCAD facility electric cost is dealt with in detail in the prior Baseline Report that the reader may want to review for detail. However, a summary of the annual cost of FLL BCAD electric meters is as follows:

\$6,315,000 per year electric bill total through

2.3. Annual Electric Consumption and Breakdown

FLL BCAD facility electric consumption is dealt with in detail in the prior Baseline Report that the reader may want to review for detail. However, a summary of the annual electric consumption breakdown of all significant FLL BCAD electric meters is as follows:

83,000,000 KWH per year in June

3. Past and Current Energy Related Projects at FLL

3.1. Introduction

BCAD has done a good job in upgrading their facilities that were constructed in years past when today's energy efficient technologies were not available. However, they are aware of additional opportunities but have been very limited in resources for energy focused projects. Projects that have been implemented in the past or are in the planning stage now include the following:

3.2. Lighting Retrofits

Most of the lighting in public areas has been retrofitted from the original T-12 lamps and magnetic ballasts to energy efficient T-8 lamps and electronic ballast technology.

There is a lighting retro-fit project in the planning stages now that will provide automatic control of ramp area lighting through the Building Automation system.

3.3. Rooftop Air Handling Unit (AHU) Replacement

A major AHU project was recently completed that replaced most all of the Rooftop AHUs in Terminals 2, 3 and 4. The project was an upgrade project that included energy efficient technologies such as variable frequency drives (VFDs), 100% outdoor air units for pre-conditioning and CO2 sensors for demand ventilation control.

3.4. Building Automation System Upgrade Project

A major Building Automation System (BAS) upgrade project is currently being implemented in Terminals 2, 3 and 4. This will result in the entire BAS that controls the HVAC systems and much of the lighting having the same modern technology in all terminals.

3.5. Chilled Water Plant Renovation Project

A major chilled water plant renovation project is planned that includes the plants in Terminals 1, 3 and 4. The construction plans were recently completed and were obtained and reviewed as a part of this evaluation. ~~ Task 6: Energy Supply, Distribution and Conservation ~~

4. LEED for New Construction and Existing Buildings at FLL

4.1. LEED Application at FLL

LEED, Leadership in Energy and Environmental Design, is an organized framework that has recently been developed for New Construction and Existing Buildings that may be applied to FLL. Application at FLL will provide a consistent focus on energy and environmental considerations even though the specific architects, engineers or assigned BCAD staff changes from project to project.

LEED includes recommendations for a Commissioning Agent that could be used on all future new and renovation construction projects. The same Commissioning Agent should be a part of the design team from the inception of a project to help ensure standardization and consistent goals even when the architect and engineer for specific projects are different. For example, the recent garage rental car facility used water cooled self contained A/C units with a cooling tower, an atypical system at FLL. A Commissioning Agent could have been a voice for the owner and advocated their preferred HVAC system, chilled water systems that could have easily been tied into a future central or distributed chilled water plant.

Newly constructed Terminal A at Logan International Airport is the first airport to receive LEED certification for new construction. FLL could become the first existing airport facility to achieve LEED EB (existing building) certification. FLL Terminal 1, the newest and most efficient terminal, could likely achieve certification with relatively minor retrofits and the least investment while the remaining terminals might receive certification in the future as part of major renovations.

4.2. LEED Background

In 1993, the USGBC was formed by a diverse group of industry leaders that included architects, developers, engineers, environmental groups and a few others. The top priority quickly became defining green. From those early discussions emerged the development of the LEED rating system with the

mission of transforming the building industry. Thus was born the U.S. Green Building Council and the idea of a better way to build.

They spent five years developing, pilot testing and refining LEED through a consensus balloting process that engaged every member organization and company until it was launched in March 2000 in Washington D.C. As of June 2004, the USGBC had more than 4,500 member organizations, businesses, product manufacturers, government entities, building owners and operators, utilities and universities.

LEED was originally designed to be a comprehensive rating system that the USGBC employs to certify new buildings and recognize building project teams for their efforts to create a green building. LEED offers prerequisites and credits allowing buildings to gain points for meeting LEED criteria. Certification is awarded on certified, silver, gold and platinum levels. Beyond the prestigious recognition that LEED certification is becoming, LEED is evolving into the very blueprint for achieving high levels of economic, social and environmental returns on investment.

Based on strong market response to LEED 2.0 (the balloted version for new construction), new rating systems have been developed. LEED 2.1 for new construction (LEED NC) has been implemented to streamline the documentation process. LEED for existing buildings operation (LEED EB), LEED for commercial interiors projects (LEED CI) and LEED for core and shell projects (LEED CS) are all fully developed or are in pilot phase of development.

4.3. Building Green the Smart Thing to Do

Designing, constructing and operating facilities in an environmentally responsible way is an idea that's time has come for several reasons, not the least of which is that building green is not only good for the outdoor environment, but is also great for the indoor environment, for the people who live and work in these buildings. Plus, and this is a big plus because of evertightening budgets, green buildings are cost-neutral in upfront costs compared to traditional construction. They are hugely less costly to operate over the life of the building, and returns on investments come much sooner, which is especially important to managers of buildings like those found on this facility. Green buildings have several beneficial characteristics in common that include:

- Optimal environmental and economic performance
- · Increased efficiencies saving energy and resources
- · Satisfying, productive, quality indoor spaces
- Whole-building mindset from the start of design and over the building's entire life cycle
- Fully integrated approach to design, construction and operation for teams, processes, systems

It has been a long-held belief that the construction of an environmentally friendly, energy- and resource-efficient building brings with it a substantial price tag and extended timetables. That is simply not the case. Breakthroughs in building materials, operating systems and integrated building automation technologies have made building with an eye on our global future not only a timely, cost effective alternative, but the preferred method of construction among the nation's leading professionals. Furthermore, government planners understand as well as the business community that buildings are huge investments and, like any sound investment, investors expect a significant return. Today's building-industry leaders are enjoying increases in efficiency and productivity, and reductions in design, construction and operational costs, all of which helps to drastically improve bottom lines. How is this being done? Through a sustainable approach labeled integrated design.

4.4. Integration the Path to Green Returns

Integration brings together owners, design teams and construction teams at the earliest stage of the building project to integrate processes and building systems. Developing buildings on an integrated, whole-building framework ensures the efficient use of energy and resources, a healthy and productive indoor environment, the optimum performance of all systems, and a wealth of other benefits that directly impact the environment and the budget. Here are some recent statistics to consider:

- About 70 percent of a building's life-cycle costs are committed by the time the first one percent of the upfront costs has been spent.
- Over a building's first 40 years, construction costs amount to only 11 percent, whereas operation and alteration costs total as much as 75 percent.

- Poor indoor air quality in the U.S. has resulted in an annual loss of \$15 billion in worker productivity and unhealthy air is found in 30 percent of today's buildings.
- With poor indoor air quality ranked by the U.S. Environmental Protection Agency as the fifth greatest health threat, the average legal settlement is \$500,000.

Pondering these economic implications, it becomes clear that the benefits offered by integrating design and construction processes and technologies associated with any building project can be substantial. By assembling key decision makers of the design and construction team at the earliest stages of a project, government managers can maximize revenues, plan for all contingencies, and prevent building-cost overruns and timetable delays.

According to the Energy Information Administration of the U.S. Department of Energy, energy costs could be reduced by 30 percent if existing technologies were deployed in buildings. Also, maximizing use of integrated building automation systems – including fire alarm, security, lighting, mechanical, electrical, and HVAC – can cost 10 percent less to install and commission. Life cycle costs of buildings also can be reduced by 25 percent at the very least, using an integrated team approach compared to existing benchmarks. This integrated process provides dramatic relief to the world's already taxed natural environment, which is at the core of what it means to "build green." But how do our planners know what is really green?

Building green. Sustainability. Integrated design. High-performance buildings. These are catchphrases that are used widely but have needed clarification and solid definition. Several years ago, leaders in the building industry recognized the challenge of creating a common set of standards that would lay the groundwork for building project teams to design, construct and operate fully green buildings.

The premiere methodology emerging in the building industry for defining and measuring how to build sustainable facilities is the LEED Green Building Rating System[™] from the U.S. Green Building Council (USGBC).

5. Central Energy Plant, Chilled Water Production and Distribution at FLL

5.1. Introduction

The four (4) airport terminals are supplied chilled water by three (3) independent plants, housed within the terminal buildings, in which terminal two (2) is supplied by the chilled water plant in the terminal three (3) building via under ground distribution piping.

5.2. Existing Chilled Water Plants

The Terminal one (1) chilled water plant is the newest, equipped with three (3) Carrier 650 ton centrifugal chillers. The chillers utilize an "Ozone friendly" HCFC base refrigerant and are relatively high efficient machines. The chillers are arranged in a standard primary secondary configuration with the secondary variable flow. The condenser water system is a standard parallel flow constant volume. The current building loads require two (2) chillers to operate during most load conditions, with one (1) chiller as the backup. The related auxiliary equipment is in good condition with many years of service life remaining. The chilled water distribution system is design for a twelve (12°) degree temperature rise (Delta T) for the chillers and on the associated air-handling units chilled water coils. The original chilled water distribution had complex tertiary pumping systems on each major air-handler with modulating pressure control valves, all to ensure high Delta T performance and to maintain the efficiency of the chilled water plant during all loads. After construction the aforementioned pumps were removed due to reported poor cooling coil performance.

Terminal two (2) is supplied chilled water by terminal three (3) chilled water plant via two (2) dedicated secondary pumps and under ground distribution piping. The secondary distribution pumps are variable speed and are located in the terminal three (3) building. The pumps and related auxiliary equipment are in fair condition with limited service life remaining.

The Terminal three (3) chilled water plant is mostly original construction. The plant is equipped with two (2) Mcquay 1000 ton centrifugal chillers. The chillers utilize a CFC base refrigerant and are low efficiency machines. The

chillers are arranged in a constant flow series primary with a variable flow secondary. The condenser water system is a standard parallel flow constant volume. The current building loads require two (2) chillers to operate during most load conditions, with no backup chiller available. The chillers and related auxiliary equipment are in poor condition with limited service life remaining.

Existing McQuay Chiller in Terminal 3

The Terminal four (4) chilled water plant is equipped with two (2) Carrier 350 ton chillers from the original construction and one (1) York 275 ton chiller added during a 1992 renovation. The chillers utilize a CFC base refrigerant and are low efficiency machines. The chillers are arranged in a constant flow series primary with a variable flow secondary. The condenser water system is a standard parallel flow constant volume. The current building loads require two (2) chillers to operate during most load conditions, with one (1) chiller as the backup. The pumps and related auxiliary equipment are in fair condition with limited service life remaining.

Existing Carrier Chiller in Terminal 4

The major air-handlers in terminals two (2), three (3) and four (4) that represent approximately ninety percent (90%) of the building loads were designed and were selected for a ten (10°) degree temperature rise on the associated chilled water coils, while the chilled water plants were designed and selected for a twelve (12°) degree temperature rise. Cooling capacity of a specific air handler or chiller in tons is basically fixed and directly proportional to the water flow in GPM (gallons per minute) times the temperature difference (Delta T). With the chillers selected for a higher temperature difference than the air handlers, all of the air handlers will not be able to receive their design GPM water flow. This would cause cooling capacity deficiencies at the air handlers (water flow is below design conditions that the coils were selected for). It is our understanding that in an effort to achieve adequate cooling capacity at lower than design air handler water flows (higher Delta Ts at the air handlers), the chilled water supply temperature set point from the chillers is lowered. However, selecting air handlers to have a temperature difference equal to or larger (preferable) than that of the chillers will result in oversized air handler coils being provided. Getting oversized air handler coils is desirable as this will make it unnecessary to lower chilled water supply temperatures to get design capacity at the air handlers.

5.3. Recommendations

Chilled Water Plant Recommendations Summary

- Implement the proposed chilled water plant renovation project for Terminals 3 and 4 that already has design drawings prepared. However, certain efficiency upgrades, that can be supported by a life cycle cost analysis and are estimated to cost \$660,000 with a 4.8 year simple payback, are recommended.
- 2. Interconnect existing chilled water plants into a new chilled water loop that might be installed within the elevated road structure that connects the terminals. This might be implemented as a separate project or perhaps as a part of a new construction project. This would result in a distributed chilled water plant system consisting of perhaps 2 or 3 plants with phasing out of the older, smaller and less efficient Terminal 4 plant. This would greatly improve system redundancy and would improve overall system efficiency (most efficient plants and chillers would be loaded first). This recommendation is detailed in Section 5.3 and is significantly more economical than a single new central chilled water plant. However, a new chilled water plant might be constructed as a part of a major new construction project as a part of the Master Plan. It is anticipated that any new chilled water plant would be interconnected as well and supplement existing plants that remain. A new interconnecting chilled water loop with an estimated project cost of \$1,200,000 and annual savings of \$86,600 would have a simple payback of 13.6 years.

Chiller Plant Renovations

During the time that this report was being generated, the Broward County Aviation Department (BCAD) contracted for the engineering and drawings for chiller plant renovations of terminals three (3) and four (4). The contract documents proposed the replacement of the existing chillers with larger machines. The scope included the replacement of the associated primary chilled water pumps, condenser water pumps, and cooling towers to accommodate the larger chillers, and the required upgrades to the equipment room to comply with the current safety codes for mechanical refrigeration.

Our recommendation is to move forward with the proposed renovations with some modification to the scope. The new high efficiency chillers that are installed in the existing plants as a part of the renovation project may be cost effectively utilized in the future through two options (1) through a Distributed Chilled Water Plant (DCWP) strategy (explained later in this section) or (2) by relocating the new chillers to a new central plant in a few years. However, the final chiller and system selection for the renovation project should be by life cycle cost analysis based upon (1) first cost, (2) operating (energy) cost and (3) maintenance cost. Experience has shown that when life cycle cost analysis is used to evaluate firm and competitive proposals from chiller manufacturers, much more efficient chillers, such as modern high efficiency variable speed centrifugal chillers, are economically justified as compared to less efficient "low bid" equipment.

In addition, consideration should be given to a modern high efficiency All-Variable Speed Centrifugal Chiller Plant (VSCCP) along with the following changes;

- a) Evaluate existing air handler cooling capacities with proposed twelve degree (12°) Delta T and proposed water supply temperature from the chillers to ensure they will have adequate cooling capacity.
- b) Select the chillers by life cycle cost analysis of competitive proposals (consider variable speed drives in addition to constant speed machines).
- c) Select the chillers with chilled water flow velocities to allow for the conversion of the existing primary secondary configuration to variable primary pumping VSCCP strategies.
- d) Select the primary chilled water and condenser pumps to accommodate the VSCCP configuration.
- Provide any required variable speed drives, controls valves, controls sensors, and sequence of operation for the new primary pumping strategies.
- f) Provide variable speed drives for the new cooling towers.

Savings Analysis

In our savings analysis we evaluated the proposed standard replacement of the chiller plants compared to the All-Variable Speed Centrifugal Chiller Plants. Our analysis revealed that the proposed standard chiller plant would consume 18,505,175 kWh or 22% of the FLL baseline. While the All-Variable Speed Centrifugal Chiller Plants would consume 16,495,712 kWh, a reduction of 2,009,463 kWh or a savings of 10.8%. The table that follows summarizes the chiller plants consumption and savings used in our analysis.

	Total Cost \$	kWh	Ton Hours	EFLH ⁽¹⁾	SPLV ⁽²⁾ kW/ton					
Current Chiller Plant Utility Summary										
Terminal #1	\$ 353,214	5,045,919	6,351,150	4,885	0.794					
Terminal #3	\$ 812,119	9,577,817	12,932,502	5,409	0.741					
Terminal #4	\$ 327,290	3,881,439	4,885,448	4,885	0.794					
Total:	\$ 1,492,623	18,505,175	24,169,100	na	na					
Proposed Chi	Chiller Plant Utility Summary									
Terminal #1	\$ 353,214	5,045,919	6,351,150	4,885	0.794					
Terminal #3	\$ 714,912	8,107,936	12,932,502	5,409	0.627					
Terminal #4	\$ 289,457	3,341,856	4,885,448	4,885	0.684					
Total:	\$ 1,357,583	16,495,712	24,169,100	na	na					
Proposed Chiller Plant Utility Savings										
Terminal #1	\$-		na	na	0.000					
Terminal #3	\$ 97,207	1,469,880	na	na	0.114					
Terminal #4	\$ 37,833	539,583	na	na	0.110					
Total:	\$ 135,040	2,009,463	na	na	na					

(1) Equivalent Full Load hours

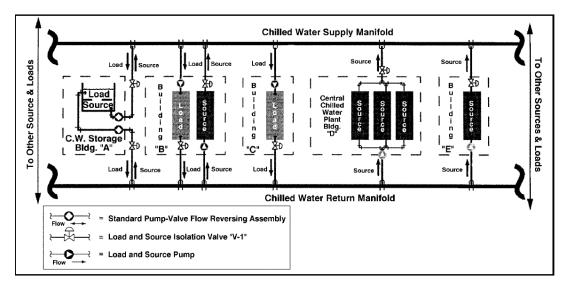
(2) Seasonal Part Load Value (average)

In our financial analysis we use a premium of \$189 per installed ton (based upon prior project costs) or \$660,000 for the additional cost of the recommended All-Variable Speed Centrifugal Chiller Plant as compared to the proposed design. With an estimated annual energy savings of 2,009,463 kWh or \$135,040 the simple payback would be 4.8 years for the \$660,000 cost premium and maintenance costs will not be impacted appreciably.

The energy savings projections for our analysis were supplied by a reliable Chiller Plant Energy Analysis Program. See the appendix for sample chiller plant analysis, including assumptions, summaries and savings projections. Other reference materials include "All-Variable Speed Centrifugal Chiller Plants." ASHRAE Journal. Vol. 43, No. 9: p. 43-51, September 2001.

Enhanced Delta T Performance

The existing chilled water control and balancing valves are pressure dependent, meaning that the chilled water flow is subject to pressure changes of the system. This can lead to excessive chilled water flow at the closest circuits and low flow at the furthest circuits, and poor Delta T performance at the cooling coils. Low Delta T performance at the cooling coils leads to lost capacity, wasted energy, and added complexity for the chilled water plant. Our recommendation is to provide enhanced Delta T performance with the following modification:


- a) Remove any remaining 3-way valves and unnecessary bypasses in all variable flow distribution systems. However, it is believed that all 3-way valves have already been replaced or converted.
- b) Where possible select coils at 12° to 14° degrees delta T condition to improve overall thermal efficiency.
- c) Select coils at design conditions for a minimum of 4 fps tube velocity on varying load applications.
- d) Ensure that heat transfer surfaces are clean, replace bad or damage coils. Currently, coils are cleaned on a regular basis and are in excellent condition.
- e) The installation of pressure independent control valves at all major airhandling unit cooling coils.
- f) On VAV air handlers, verify that the supply air temperature sensor is monitoring the cooling coil discharge in lieu of the discharge of the supply fan as applicable. The supply fan can add up to 3 degrees to the discharge temperature resulting in over cooling of the discharge air and low Delta T conditions.
- g) Provide new pumping controls and sequence modifications to maintain the minimum required pressure of 5 psid across the most remote valve(s).
- Monitor all major air-handling units cooling coil return water temperature and corresponding system Delta T. Provide automatic notification of low delta T conditions.
- i) Provide continuous re-commissioning of the critical temperature control loops on all major air-handling units.

In our analysis we use a cost of \$71 per ton or \$286,000. With an estimated annual energy savings of 545,216 kWh or \$38,165 the simple payback would be 7.5 years.

Possible Chilled Water Plant Consolidation and Inter-Connection Loop

The Fort Lauderdale-Hollywood International Airport (FLL) has three (3) major independent chilled water plants. Two (2) of these plant as discussed in this report will be renovated with new equipment, leaving many years of service life remaining, in most cases 20 to 25 years. In our analysis we evaluated the strategy of a single new Central Utility Plant (CUP) versus a Distributed Chilled Water Plant (DCWP). For FLL, a DCWP could include a piping loop installed under the elevated road structure that connects the terminals.

In a Distributed Chilled Water Plant the existing or new chilled water sources (chillers) are connected to the chilled water system through the supply and return manifold as illustrated below. Primary and secondary pumping systems would be required and if there are sufficient pumping head requirements in each terminal, tertiary pumping systems at each terminal may be warranted. In the illustration all sources pump out of the return manifold through the cooling source and into the supply manifold. All loads are pumped out of the supply manifold through the load and into the return manifold. Multiplexing all of the chilled water sources and loads in this manner has many advantages. Any source or combination of sources can serve any load or combination of loads any place on the manifold. Loads and sources can be matched to provide the most efficient operation. Manifold piping is smaller and less expensive than conventional central plant loop piping. Chilled water diversity is unleashed to provide for additional square footage without adding chiller capacity. Chiller redundancy is maximized. Thermal storage capacity and strategies can be implemented by simply adding the thermal storage plant to the manifold headers.

Our analysis revealed that a single new CUP would cost approximately \$1,787 per ton or \$7,000,000 for a 4,000 ton plant. A DCWP with an interconnecting loop would reuse all the existing assets and would cost a faction of a new Central Utility Plant.

In our analysis we use a cost of \$175 per linear foot of distribution piping and \$60 per ton for equipment or \$1,200,000. With an estimated annual energy savings of 1,237,178 kWh or \$86,602 the simple payback would be 13.6 years. Although we do anticipate capital savings to offset some of the project cost it couldn't be quantified at this time.

Our recommendation is to implement a DCWP with an inter-connecting loop rather than a single new chilled water central plant. It could be implemented as a separate project or during major terminal expansions to the airport. However, a new chilled water plant might be constructed as a part of a major new construction project. It is anticipated that any new chilled water plant would be interconnected as well and supplement existing plants that remain.

Thermal Energy Storage

The Fort Lauderdale-Hollywood International Airport (FLL) could benefit from the use of Thermal Energy Storage (TES). This proposed expansion could provide an additional peak capacity of 2,000 tons and would also provide demand side management tool for decreasing FLL expenditure for electricity. The TES, acting like a large thermal flywheel, will shift cooling load on the chillers to off-peak times by charging the water in the tank. The tank volume will be cooled at night by the chillers and warmed by cooling load during the day. It allows for the use of less-expensive off peak electricity rates, and reduces the need for additional chiller capacity. This project would not only be capable of shifting significant demand to off-peak hours; the total system efficiency could be increased by 10%. Most of this increase in efficiency would be attributable to increasing the annual production by more efficient chillers and also taking advantage of the more favorable condensing conditions at night.

In our analysis we use an 18,000 ton hour TES system with a budget cost of \$172 per ton hour (budget cost from prior projects) or \$3,100,000. With Florida Power & Light Company (FPL) incentives of \$367,000 and an estimated annual energy savings of 590,800 kWh or \$250,876 the simple payback would be 10.9 years.

Fixing the low delta T conditions could be a stand alone project or it could e be implemented in conjunction with the TES project and/or in parallel with the Distributed Chilled Water Plant and/or Central Chilled Water Plant so that the necessary airport wide chilled water distribution system would be in place to realize the maximum savings. ~~ Task 6: Energy Supply, Distribution and Conservation ~~

6. Energy Supply Measures at FLL

6.1. Consolidate Numerous Electric Meters

FLL BCAD facilities are currently provided most of their electric energy through 12 significant and separate electric services and meters as indicated below.

Concourse-B (T1)	Concourse-C (T1)	North Concourse-D (T2)	# Mech (T3)	NW Concourse -E (T3)	West Terminal (T3)	AA West Concourse-F (T3)	West Concourse-F (T3)	S. Terminal-H (T4)	Admin (T4)	Hibiscus Parking	Cypress Parking*
\$413,444	\$1,025,544	\$340,027	\$945,134	\$80,860	\$369,644	\$32,637	\$137,531	\$610,883	\$604,989	\$534,849	\$1,218,345

There would be some cost savings if these services were consolidated with a single monthly bill. This would be the case because the cost of electricity associated with the larger services and meters is slightly lower than the smaller services. There are two possible ways that consolidation of the electric meters might be accomplished. The first would be to perform extensive electrical distribution modifications in order that all of the incoming electric power is metered at one physical point. This would be very costly and would not be cost effective. The second would be to perform the consolidation electronically so that the total demand at any time is determined by the sum of the demand from each electronic meter at any time. Some electric utilities will allow this type of meter consolidation when requested and negotiated.

It should be noted that consolidating electric meters would only save electric costs (average unit cost of electricity would be slightly lower) but there would be no energy savings or positive environmental impact even if it were implemented.

6.2. Peak Shaving Using Existing Emergency Generators

Electric cost reductions can be achieved through demand control strategies. These strategies, which include thermal storage of chilled water, reduce the peak electric demand, but produce little to no energy savings. One possible demand strategy would use the emergency electric generators to generate electricity during peak demand periods so as to reduce the electric demand charges. The FPL electric utility has a special electric rate, CILC, whereby the utility contracts with a customer for the customer to reduce their demand by a predetermined KW when requested by the utility. However, FPL was contacted and they are not currently granting any more CILC rates at this time.

It should be noted that peak shaving using existing emergency generators is not an energy saving measure since it basically results in reduced demand charges and possibly a more favorable CILC electric rate. In addition, this measure can result in a small negative environmental impact since the pollution released by the internal combustion engines is more than that released by the utility company to produce an equivalent amount of electrical energy.

6.3. Conversion to Natural Gas

Natural gas is provided to tenant spaces that have their own service and meters. In addition, it was learned that a major natural gas pipeline will be installed on FLL property that will bring in gas from a liquefied natural gas port in the Bahamas. The natural gas might be used to displace some of the existing electrical energy or as a cogeneration fuel source. One specific possible application would be existing electric hot water boilers in Terminal 1 that are used to heat water for HVAC heating and/or reheat applications. However, using "free" reclaimed heat from the chilled water plant is a more efficient option that is believed to be viable for Terminal 1. Installation of a small heat recovery chiller is one way to generate "free" reclaimed heat.

7. Lighting at FLL

7.1. Lighting Audit Scope

A comprehensive lighting audit was performed that included a physical inspection of the following buildings at the airport:

- BCAD Administration Buildings (North and South)
- Cypress RCC The new garage and rental car center
- Facilities Building
- Hibiscus Garage
- Palm Garage
- Terminals 1 through 4
- The URS Building (adjacent to the BCAD Administration Buildings)
- West Maintenance Facility
- Terminal Enplane and Deplane Areas
- Roadways between Terminals 1 and 4

The lighting audit scope was relatively detailed and included audit staff physically surveying nearly every space in each of the referenced buildings to evaluate the lighting serving the space. Evaluation included the number of fixtures, number, type and wattage of lamps in each fixture, an assessment of the fixture's ability to meet the lighting needs of the space in an efficient manner, lighting (foot candle) measurements, applicability of daylight harvesting, etc. Lighting audit detailed findings may be found in the appendix.

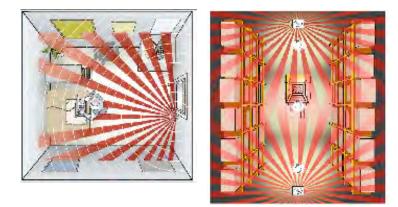
7.2. Lighting Audit Findings and Recommendations

Approximately 35,000 lighting fixtures exist at the airport. There are many types of lighting equipment ranging from compact fluorescent fixtures and lamps, to linear fluorescent fixtures and many high-intensity discharge fixtures (HID). HID lighting included high pressure sodium (HPS) fixtures (lamps have a yellowish glow) and metal halide (MH) lamps (clear white light). Our goal was to identify all of the lighting equipment in the airport, including those types of equipment that should not be modified as they represent the highest and best technology available for the purpose. Examples of appropriate lighting are miniature MR16 lamps in many of the vendor areas for merchandise display, compact fluorescent biax fixtures in the vendor areas and elsewhere and exterior high pressure sodium security

lighting where this lighting is at appropriate light levels for security and other specific tasks and purposes.

The following recommendations apply to approximately 27,000 light fixtures (75%) in the above-listed buildings and include the following:

1. Replacement of many HID luminaires with linear fluorescent fixtures (generally T-8 but T-5 may be considered for high ceiling areas). This recommendation has potential application to not only the older high pressure sodium HID fixtures in the baggage handling areas below the concourses and behind the terminal buildings but also in the three garage facilities and in high ceiling areas with metal halide lighting fixtures (areas in Terminal 1 and it's concourses for example).



 Retrofit existing luminaries containing T12 fluorescent lamps and magnetic ballasts with new 28-watt T8 lamps and electronic ballasts. In many cases, there is the ability to reduce lamp quantities from 3 or 4/fixture to 2 lamps/fixtures using specular reflectors.

- 3. Re-lamp all existing 32-watt T8 lamps with new 28-watt T8 lamps. This will result in energy savings and also will create the opportunity for the airport to maintain an inventory of 4' T8 lamps with consistent color temperature and lumen output. Presently the airport has or utilizes lamps with different color temperatures adversely affecting the aesthetics of the lighting.
- Install lighting controls. This is done through (1) three types of motion sensors (sensors may utilize ultrasound, passive infrared or dual technology) – line voltage sensors attached directly to a single

fixture; ceiling mounted sensors (typically low voltage) and combination wall switch sensors.

7.3. Lighting Operating Hours and Logger Data

In order to calculate the benefits that will result from the installation of occupancy sensors, it was necessary to identify those areas of the airport in which occupancy sensors are recommended. Our physical inspection, including interviews with personnel, indicates that lights in most areas are left on regardless of the need. A good opportunity for potentially large savings is the application of occupancy sensors to the gate areas. Loggers were randomly installed in a total of 16 gates in the Terminals. Results are as follows (details are in the Appendix):

Terminal	Average Logg	ed Hours Per Gate	% Time	Occupancy Sensors Savings	
	Occupied	Unoccupied	Unoccupied		
1	21.9	4.2	16.1	Small	
2, 3 and 4	21.3	19.1	47.7	Large	

In the Gates, occupancy sensors could be installed so that bi-level lighting occurs with minimal light levels (perhaps equal to minimum light levels for corridors as recommended by the Illumination Engineering Society) when unoccupied and the higher light levels when occupied. This would be very cost effective when incorporated into the original design and construction or renovation of gates and not as cost effective if installed on a retro-fit basis (significant re-wiring of fixtures may be required). Our analysis includes estimates that some areas would reduce energy consumed by as much as 40% if occupancy sensors were installed and other areas by 15%. Areas of the terminal buildings are rarely occupied between 1:30 AM and 4 AM. Areas behind and below the concourses, and the garages would benefit by the installation of motion sensor devices installed directly on fixtures. Our assumption in these areas was the use of such sensors on approximately one-third of the luminaires.

7.4. Potential Lighting Project Savings

Implementation of all lighting recommendations that are practical, technically sound and economically viable will result in the following estimated electrical savings:

Demand Reduction	883 kW (.883 mW)
Consumption Reduction – Lighting Modifications	7,500,000 kWh
Consumption Reduction – Occupancy Sensors	1,600,000 kWh

Additional Savings from Reduced Air Conditioning Load will result as well. We calculated that of the total kWh reduction at the airport from lighting load reduction, approximately 20% is located in air-conditioned space. A little over 80% of the lighting equipment to be modified is in non-air-conditioned spaces. Assuming an additional benefit of 25%, consumption will be further reduced by a little over 375,000 kWh.

By far the largest percentage of demand reduction (42%) assumes the replacement of HID lighting with new gasketed "vaportight" linear fluorescent luminaires. These will be either 4' fixtures containing two T8 lamps or 8' fixtures containing four T8 lamps. About 50% of the projected capital cost is associated with these changes.

The HID lighting to be replaced is primarily located in the Hibiscus, Palm and Cypress garages and in the areas behind baggage claim and below all of the concourses.

Additional benefits that will result from replacement of HID fixtures with linear fluorescent luminaires include:

- Instant-on after restoration of power after an outage.
- Ability to automatically control through the use of occupancy sensors.

- Lower maintenance cost. Rated life of these new lamps are as much as 36,000 hours (warranted for 36 months), depending on the lamp/ballast combination chosen. The best HID lamp life that can be expected is 24,000 hours.
- Higher lumen/watt ratio
- Better color rendering, i.e. a CRI of 45-75 with HID lighting and a CRI about 85 using fluorescent T8 technology.
- Much slower lumen and color depreciation with time resulting in much more uniform light levels and color rendition over the life of the lamp.

Using fluorescent luminaires would allow the airport to control each fixture in two ways. Combination motion/photosensors could be mounted on each luminaire adjacent to an area with sufficient sunlight to shut lights (or dim them – assuming the use of dimming electronic ballasts) during daylight hours and shut down during evening hours when no motion is detected.

Technology is available that combines automatic occupancy sensing controls and day lighting control. One example is the CMRB-10 Series sensor and controller that is manufactured by SensorSwitch Inc.

The CMRB-10 Series sensor mounts directly to the end of a fixture. It will sense motion and has both an On/Off Photocell option and an Automatic Dimming Control Photocell option.

Areas beneath the terminal buildings use high pressure sodium fixtures as the primary light source. Replacing these HPS fixtures with new linear fluorescent luminaires would produce whiter and more uniform lighting and have a positive effect on the work environment (enhance productivity and improve employee perception of their environment (the yellowish light is perceived negatively (depressing)).

Additional benefits include more uniform lighting and longer-lasting lamps and ballasts resulting in much lower lighting maintenance costs. There are many linear fluorescent fixtures in these areas already. They will be retrofitted with new T8 lamps and electronic ballasts. Replacing the HID lighting will enable BCAD to increase light levels and spread light more uniformly. Almost all of the present equipment is near or at its "end of life", significantly degraded and needs to be replaced.

BCAD has "retrofitted" much of the lighting in the terminals, however, all of the lighting that is not in the public eye has remained T12/Magnetic. We anticipate retrofit of over 4,000 of these luminaires.

Occupancy sensors might be considered on approximately 1/3rd of the luminaires in the garages to reduce energy consumption when motor vehicles or pedestrians are not present. Adequate light levels will still exist. However, occupancy sensors will allow us to control a portion of the luminaires when the areas are not occupied. When motion is detected near a fixture it will turn on automatically. If motion is not detected again, the fixture will turn off in 10 minutes (or longer, if desired). This measure might be installed on a small area on a trial basis and closely monitored and logged.

We are also recommending room occupancy sensors in many offices, conference rooms, break rooms, file rooms and other areas.

7.5. Garage Light Levels and Potential Liability Issues

Based on our discussions with FLL personnel, it is evident that a great deal of concern exists regarding efforts to use lighting controls, particularly as related to the three garages. Our recommendations include mounting occupancy sensors directly onto a percentage of the new luminaires to be installed. These will sense motion and turn, for example, every other luminaire off during periods when no pedestrian or motor traffic is sensed.

Based on the IES Lighting Handbook, a Covered Parking Facility requires an average light level of 5 foot-candles. Light measurements were taken when, several years ago, Johnson Controls, Inc., through its lighting subcontractor, installed 4' and 8' luminaires as a test in the Hibiscus Garage.

At that time a report was submitted that included the following:

"Predominant fixtures in the Hibiscus Garage are 150-watt high pressure sodium ("HPS") and 200-watt metal halide ("MH") Gardco GP1 Luminaires. Predominant fixtures in the Palm Garage are 200-watt high pressure sodium Gardco fixtures and some 250-watt metal halide fixtures added since the original construction.

JCI requested that we conduct two field tests for inspection by airport executives: We performed the following test installations:

1. Removing and replacing six (6) of the 150-watt HPS luminaires with six (6) 1'x4' 2-lamp vapor-tight fixtures at section 3C, each

containing two Sylvania FO32T8/741/ECO (Octron "700" Ecologic) lamps and an Osram-Sylvania Quicktronic 2-lamp QT2X32/277LP Instant-Start Electronic Ballast.

2. Removing and replacing six (6) of the 200-watt MH luminaires with six (6) 1'x8' 4-lamp vapor-tight fixtures at Section 2C, each containing four Sylvania FO32T8/741/ECO (Octron "700" Ecologic) lamps and an Osram-Sylvania Quicktronic 4-lamp QT4X32/277LP Instant-Start Electronic Ballast.

Replacement luminaires were surface-mounted in accordance with industry standards and in compliance with all applicable codes, utilizing existing junction boxes in existing locations.

Light Level Comparisons were made utilizing a calibrated Greenlee Illuminometer (Certificate of Conformity attached). Readings were taken after dark at floor level.

Gardco 150-watt HPS luminaires provided an average of 14.75 footcandles directly under a fixture and 17.3 foot-candles between fixtures. The 2-lamp 4' vapor-tight luminaire installed provided an average of 14.30 foot-candles directly under a fixture and 10.4 footcandles between fixtures.

Gardco 200-watt MH luminaires provided an average of 16.75 footcandles directly under a fixture and 22.5 foot-candles between fixtures. The 4-lamp 8' vapor-tight luminaire installed provided an average of 17.80 foot-candles directly under a fixture and 19.0 footcandles between fixtures."

Photometric analyses, as well as another test installation, will determine whether the use of occupancy sensors on a percentage of the new luminaires will provide sufficient light for safety purposes. Questions regarding the reliability of the sensors chosen must be answered. In the event of sensor failure, it must be determined whether the sensor will fail with the lighting circuit closed, so that the light remains on if there is a failure, rather than off which is the industry standard.

We believe that maintaining or exceeding IES lighting levels would eliminate any liability issues. It is important to note that the existing HID lamps have significant lamp lumen depreciation over the life of the lamp whereas the proposed fluorescent lamps have minimal. Therefore, it may be possible to turn off some of the fluorescent lamps in an area and still exceed minimum IES standards while this would not be true for HID lamps, particularly towards the end of their useful life.

(Reference "Lighting Illumination Levels" by Tzveta Panayotova, Univ. of Florida, Facilities Planning and Construction).

Also note Florida Building Code Section 13-415.1.ABC.1 Controls, subsection 2, requiring that interior lighting in buildings larger than 5,000 sq. ft. contain occupancy sensors "...that shall turn lighting off within 30 minutes of an occupant leaving...".

7.6. High Efficiency LED Runway Lighting

LED (light emitting diode) lights are available for application to the runway landing lights. According to the report "LED Runway Landing Lights", Lighting Design Lab publication that can be found at www.lightingdesignlab.com/articles/led/ledfaa2.htm, a 116 watt light source can be replaced by a 13 watt LED with equivalent lighting effectiveness. The audit conducted by JCI did not include a detailed analysis of the runway lighting but there appears to be a significant opportunity to reduce energy and maintenance costs with a LED lighting retrofit. The cost to implement a runway lighting retro-fit is not included in the \$3,000,000 lighting estimate.

7.7. Tenant Vendor Spaces and Metering

Tenant vendor spaces were also included in our study but are not included in the economic data reported which is for BCAD facility space only. Some changes are recommended such as replacement of incandescent/halogen track lighting with compact fluorescent technology. The cost to implement any tenant vendor spaces is not included in the \$3,000,000 lighting estimate.

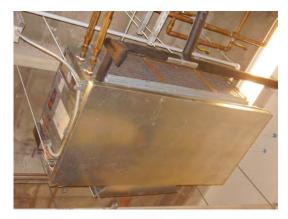
Most Tenants (other than airline tenants) have their own electric meters for power and lighting. However, air-conditioning cooling (chilled water) is supplied by BCAD. Reducing heat from incandescent/halogen track lighting, for example, will improve employee comfort and also reduce the A/C load. BCAD can make certain requests on Tenants to improve energy profiles, subject, of course to the needs of tenants for company-wide uniformity of lighting design. ~~ Task 6: Energy Supply, Distribution and Conservation ~~

8. Other HVAC Systems at FLL

8.1. Eliminate Inefficient Electric Boilers in Terminal 1

Terminal 1 was found to have two electric boilers that heat hot water for HVAC applications. One of the boilers depicted below, that is rated 100 KW, was found to be operating at 100% capacity (all 5 heating elements were operating) on a hot summer day.

Most all of the hot water is believed to be used for reheating pre-conditioned outdoor air at the 100% outdoor air AHUs. There are several advanced energy options including:


1. Utilize heat pipe heat exchangers or run around water loops so as to provide free pre-cooling and free re-heat.

- Use waste/free heat from the chillers to provide free hot water for re-heat. Installation of a small heat recovery chiller is one way to generate free reclaimed heat.
- 3. Replace the existing inefficient electric resistance boilers with new boilers that utilize natural gas.

The options are listed in order from the most efficient with the least operating cost. Therefore, from an energy and environmental perspective, option 1. would be the most desirable and option 3. the least.

8.2. Convert Hibiscus Garage to Variable Volume Pumping

The hibiscus Garage's air conditioned spaces are served by numerous relatively small self contained DX (Direct Expansion refrigeration) water source heat pump units as depicted below.

Currently, cooling water is pumped continuously to each unit regardless of whether its compressor is operating. The water is circulated from central pumps and cooling towers. An energy saving measure would have each unit equipped with an automatic valve that would close when the unit's compressor is not operating. Variable frequency drives (VFDs) would be retrofitted along with new controls so as to convert from constant to a variable volume cooling/condenser water system.

8.3. Turn Off Additional HVAC Equipment at Night

Most of the HVAC equipment operates on a continuous basis. Much of this equipment could be turned off in the middle of the night when passenger traffic is nonexistent or very light. For this to be successful, it is important that exhaust systems do not continue to operate causing negative building pressurization (infiltration of humid outdoor air), high relative humidities and mold growth.

8.4. Expand Demand Ventilation Control Using CO2 Sensors

During the recent AHU replacement project, demand based ventilation controls using CO2 sensors that automatically adjust outdoor ventilation rates to match building occupancy levels were installed. However, there are still some AHU systems that could use this advanced energy saving technology that are not so equipped.

8.5. Pump Impeller Trimming

During the survey of chilled water and condenser water pumping systems, it was observed that a number of balancing valves were partially closed like the one depicted below that was nearly closed.

When chilled water and condenser water systems are designed, pressure losses are either estimated or rules of thumb are used. Since the system can be throttled down if the pump is oversized, large safety factors are typically applied (engineers are never sued for over sizing a pump but have been sued for under sizing pumps). The result is a pumping system that "works" but is very inefficient with balancing valves throttling water flow with large pressure drops occurring in the balancing valves.

An efficient solution is to perform test and balance procedures and engineering calculations to determine the pump head that would be required to achieve design flow if the balancing valve was 100% open. Then using the pump performance curves, the impeller diameter that would be required to generate this head is determined. Finally, the pump should be disassembled and the pump impeller trimmed to the required diameter. When re-installed, the design flow will be achieved with the balancing valve 100% open with no inefficient throttling and with the pump requiring much less power than before.

9. Renewable Energy and Other Technologies at FLL

9.1. Automatic Shutdown of Escalators and Moving Walkways

Escalators and moving walkways as depicted below are generally operated on a continuous basis.

The moving walkways may be automatically shut down by a schedule through the BAS and/or by detectors that sense passengers approaching the moving walkway. The use of passenger detector technology has been applied successfully at other airports and is recommended.

However, shutting down escalators is a more complex issue. If the escalators are off, there is a safety and potential liability issue since they are not designed to meet code requirements for stairs. In addition, having the escalators turn on and off could create a jolt that could cause users to fall. If they are turned off between the hours of perhaps 1 AM and 5 AM, they would need to be cordoned off to prevent any use as stairs. A more detailed evaluation is required to determine if the energy savings would more than offset the additional labor cost of someone who cordons off an escalator and then turns it off and then reverses the sequence in the morning.

Another new technology option is the use of the proprietary Kone "Ecostart" energy performance control for escalators and elevators. When there is little to no passenger traffic, Ecostart reduces voltage and current supplied to the escalator or elevator motor generator. When demand increases, Ecostart instantly delivers the required power. The soft start feature of Ecostart reduces in-rush current by up to 75%. An adjustable timed ramp circuit gradually increases power until the motor reaches its operating RPM. Kone's

literature claims that the technology can reduce escalator and elevator energy usage by 40% and have a payback of around 3 years but the energy savings claims in the literature that was made available by Kone for this evaluation did not have good documentation. This appears to have promise but a more detailed evaluation is recommended prior to an implementation decision.

9.2. Domestic Water Booster Systems

Domestic water systems at FLL are equipped with booster pumps such as those depicted below and they may be retro-fitted with variable frequency drives (VFDs) and new automatic controls to match pump output to domestic water demand for energy savings.

9.3. Common Use Systems

There has been a trend in commercial airports to utilize what are referred to in the industry as common use systems.

Benefits of common use systems include:

1. Maximize space utilization. Increase efficiency of ticket counters, curb side check in locations and gate operations.

- Coordination between terminal activities and back of house systems to provide seamless automated control of utilities for the passenger experience. For example, gate area lighting may be reduced significantly automatically when not in use and automatically raised to design levels based upon airline arrival and departing flight schedules.
- Coordinate activities with in-line baggage handling, safety and security operations to efficiently move passengers through the terminal.

Application of common use systems is recommended at FLL and this will result in improved energy efficiency and a positive environmental impact.

9.4. Renewable Energy Sources

9.4.1. Photovoltaic Power Generation

Photovoltaics (PV) are an important energy technology for many reasons. As a solar energy technology, it has numerous environmental benefits. As a domestic source of electricity, it contributes to the nation's energy security. Photovoltaics is a growing high-tech industry, it helps to create jobs and strengthen the economy. The cost associated with producing and using photovoltaics is steadily declining and it is becoming more available. Few power-generation technologies have as little impact on the environment as photovoltaics. As it quietly generates electricity from light, PV produces no air pollution or hazardous waste. It doesn't require liquid or gaseous fuels to be transported or combusted. And because its energy source - sunlight - is free and abundant, PV systems can guarantee access to electric power. Because of these benefits, PV can play an important role in mitigating environmental problems.

Renewable Energy Technologies Grants Program

The Florida Renewable Energy Technologies Grants Program was established in June 2006 (SB 888) to provide renewable energy matching grants for demonstration, commercialization, research, and development projects relating to renewable energy technologies. Eligible recipients include municipalities and county governments; businesses; universities and colleges; utilities; not-for-profit organizations; and other qualified entities as determined by the Department of Environmental Protection.

The grant applies to photovoltaic systems for solar-generated electricity (Calculated at \$4.00 per rated Watt). Rebates will be allowed at a maximum of \$20,000 for residential installations, while systems on commercial property may qualify for up to \$100,000 rebate.

Option 1: Separate Photovoltaic Panels

One option is to take full advantage of Florida's Renewable Energy Technologies Grants Program (SB 888) by applying for the maximum rebate of \$100,000 and this would in effect apply matching funds up to 25,000 watts of installed photovoltaic panels.

In our analysis we evaluated the feasibility and potential economics of installing 200 (125 watt) photovoltaic panels in a parking lot canopy configuration. The photovoltaic panels will be connected to the parking lot power system through a utility grid inverter. The PV panels will provide electrical power to the parking lot lighting systems and other miscellaneous loads.

In the financial analysis we used a budget cost of \$9.12 per watt installed or \$228,000. With Florida's incentives of \$4 per watt and an estimated annual energy savings of 43,617 kWh or \$4,012 (based upon a blended rate of .092 per KWH). This would result in a simple payback of 57 years. However, after application of the \$100,000 Florida grant, the simple payback would be reduced to 32 years on a \$128,000 investment. A PV project might be implemented in parallel with larger projects that have excess savings to provide an overall financial and environmental solution.

Budgets for Option 1 were supplied by the Solar Advisor Model ("SAM") and is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Midwest Research Institute ("MRI") for the Department Of Energy ("DOE"). The RETScreen® International "Clean Energy Project Analysis Software for Photovoltaic" is provided by the Natural Resources Canada (NRCan). Potential hurricane wind damage to solar panels is a risk that can be essentially eliminated by the use of an alternative technology described in Option 2.

Option 2: Integrate Thin-Film Photovoltaic Technology into the Roof

Another approach worth consideration is a newly developed application of thin-film photovoltaic technology. While the technology has been around for more than 20 years, the last 12 years has seen a vast improvement. A leader in this technology is Uni Solar, based in Michigan. The thin film PV technology has actually proven to be more productive than the typical crystalline panel, producing 20% to 30% more kWh from a comparably sized glass panel system. Products are well developed that may be applied to large scale roofing projects in a building integrated PV (BIPV) approach.

As a BIPV application this product is part of the facility roof and is best applied during a re-roofing activity. By combining the two applications it is possible to match the life expectancy of both the roof and the PV, getting at least 20 years of service from each.

This approach might be coupled with a developing financial market that allows the federal tax and depreciation incentives for solar technologies to be brought to the public sector. In the case of a BIPV solution the financier can take a 30% tax credit on the PV and the portions of the roof connected to the PV (considered supporting structure) as well as an accelerated depreciation (5 year) on the same amount. These benefits are delivered to the public entity in the form of a lower acquisition cost for the BIPV asset.

As a relatively specific example, lets assume 500,000 square feet of existing roof space could incorporate the BIPV product. Assuming coverage of 70% of this space approximately 1.5 MW of PV could be placed. Using similar assumptions, expected annual generation would be 2,304,000 kWh (from PV Watts Ver 1, using defaults, Miami location), representing an annual savings of \$207,000 at 9 cents per kWh.

Lets also assume that the 500,000 square feet of roof was in need of roof replacement and replacement is budgeted as a \$10M project, and the PV addition, at 1.5MW and \$7.50 per watt, comes to \$11.25M for a total of \$21.25M. The tax credit for the BIPV solution is 30% of the PV and 30% of the portion of the roof covered by the PV (assume 70%) for a total tax credit of \$5.475M. The same amount is depreciated over the next 5 years, without

reduction for the tax credit, so essentially another \$5.475M (30% tax bracket) is recovered in the first 5 years. The tax credits and roof budget total almost \$21M – essentially the cost of the project – no property or sales taxes on PV in Florida. The private investor is looking for a 10% IRR, so any additional funds are recovered through a small charge on the kWh delivered. During the 20 year performance period, FLL/BCAD would be relieved of any responsibility for the roof, and would only pay for power delivered. Utilizing a third party approach to apply the product would require a payment of most or the entire roofing budget, \$10M in the example, and then the power would be purchased at a discounted rate. Annual electric savings of approximately \$42,000 would result with the power being purchased at a discount of 20% below current kWh rates. Essentially, the project could be structured to cost BCAD nothing up front so the payback would be immediate.

Typically a roofing and electrical services contract is arranged which places responsibility for both the roof and PV in the hands of the contractor for the 20 year length of such agreements. As long as the base load of the facility is greater than the peak output of the array the ability to connect is not limited by the serving utility. Each utility jurisdiction has varying rules related to the interconnection of PV systems, so further analysis and discussions with the serving utility (FP&L) would be required.

Solar Integrated is currently the only FSEC approved applicator of the Unisolar product. Information on the Solar Integrated product is provided in the appendices of this report.

The BIPV system is perhaps uniquely suited for hurricane prone areas such as FLL. A BIPV installation by Solar Integrated was recently completed for a military base on Okinawa just before a Category 4 (150 to 180 mph winds) hurricane hit the island. The roofing system and BIPV related attachments can be engineered for any wind load conditions. The roof at Okinawa was a 185 mph engineered design. The pictures that follow are of the Okinawa BIPV installation after the hurricane showing no damage to the PV roof but significant damage near the building.

Regarding approval by Miami-Dade code officials, the manufacturer of the roof, Snarafil, is already fully approved there with many existing installations. However, it is recognized that approval of the specific Sarnafil roof with the integrated PVs may require some time for approval but there is no question that it can receive approval.

9.4.2. Daylight Harvesting

The use of natural sun light in place of or to supplement electric light fixtures, commonly referred to as daylight harvesting, is the most basic renewable application. Sunlight is an efficient lighting source, particularly when the glass has been specially treated to allow the transmission of visible light and the removal of the invisible (shorter wavelength untra-violet and infrared spectrum) that only adds heat and increases air conditioning costs. In addition to energy savings, the use of natural daylight in buildings has been proven to have a positive psychological impact causing sales to increase in retail stores and scores to improve in schools. When applied at FLL, daylight harvesting is a renewable with a relatively large number of small individual opportunities with a wide range in size and payback.

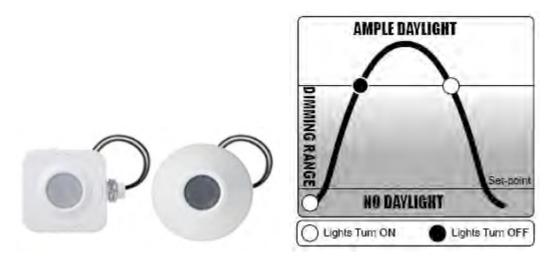
~~ Task 6: Energy Supply, Distribution and Conservation ~~

In its simplest application, a photocell switch can be used to turn off unnecessary lights, particularly outdoors, during daylight hours. Simple photo-cell switch applications can have a payback of one year or less. When applied indoors, controls may be installed that sense the amount of light in the space and automatically either turn some lights off or automatically dim lights (efficient dimmable fluorescent lighting is readily available) so that the total light in the space remains relatively constant. The simple payback on these more sophisticated interior day lighting control systems can vary from approximately 4 years when applied in new construction projects to 8 years or longer when applied to retro-fitting existing spaces.

There are relatively limited opportunities for daylight harvesting in terminal buildings 2, 3 and 4. However, extensive daylighting opportunities exist in Terminal 1.

The 3 pictures above are of exterior lighting fixtures that could be automatically controlled by simple photo-cell switches to prevent operation during daylight hours. In these types of applications, the simple payback on the cost of the modification will be short and vary between about 1 and 4 years.

The 2 pictures above are the ticketing and baggage claim areas in Terminal 1. A "Lutron Graphic Eye" lighting control system is currently in place that was designed to shut down HID lighting in the ticketing area. Lighting measurements indicated that additional light fixtures could be turned off when daylight is available and the resulting light levels would still be above IES (Illumination Engineering Society) recommended levels. The original design also controlled areas in which the system has been overridden on. However, some of the HID indirect lighting fixtures (400w metal halide) are being controlled. The second picture is of recessed HID light fixtures in the baggage claim area. Where day lighting is to be applied, it is better to have fluorescent fixtures than HID fixtures since (1) fluorescent fixtures can be easily cycled on and off whereas HID lamps require a warm-up period before full illumination and (2) dimmable fluorescent lighting systems are readily available and are efficient whereas HID lamps cannot be efficiently dimmed. These two applications show the importance of integrating day lighting design into the original construction to ensure the most cost effective utilization of day lighting. Having to change out HID fixtures to dimmable fluorescent systems in a retro-fit application will cause the payback to be much longer than if it had been incorporated into the original design.



The picture above is the gate seating in Terminal 1. As can be seen, there is a significant day lighting opportunity. However, it is important to note that the continuous fluorescent lighting fixtures are installed perpendicular to the windows rather than parallel to the windows. This is important since only those fixtures that are close to the window may be turned off or dimmed. Typically, all of the fixtures in a row are on the same lighting circuit such that the existing installation does not lend itself to a retro-fit day lighting control project without relatively expensive re-wiring of the existing fixtures. Again, the importance of integrating day lighting design into the original construction to ensure the most cost effective utilization of day lighting is obvious. If the lighting fixtures had been installed in a continuous manner parallel to the windows, an automatic day light control system could have been installed to result in a short payback, approximately 3 years or less. However, if light fixtures must be re-wired in a retro-fit project, the payback could easily exceed 10 years.

Day lighting sensors and controls, such as the CM-PC and CM-PC-ADC Series, manufactured by SensorSwitch Inc., can be used in conjunction with power packs installed to local branch circuits to control groups of fixtures when sufficient ambient light is available and for automatic dimming control with electronic dimmable ballasts. SensorSwitch describes these controllers as follows:

The CM-PC and CM-PC-ADC series of On/Off and Automatic Dimming Control Photocell sensors provide the industry's most intelligent control of lighting for daylight harvesting applications. Ideal for public spaces with windows like vestibules, corridors, or bathrooms; the sensors work by monitoring daylight conditions in a room, then controlling the lighting so as to insure that adequate lighting levels are maintained. The CM-PC is used for On/Off lighting control; turning off the lights when sufficient natural light is present and turning them on when additional lighting is necessary. Additionally with the Dual Zone (-DZ) option, a second set of customized control outputs is provided. All CM-PC sensors can be used alone or as part of an occupancy sensor system. The sensors are powered with 12 to 24 VAC/VDC and typically operate with a PP-20 or MP-20 Power Pack; enabling complete 20 Amp circuits to be controlled. To add dimming control to the On/Off switching provided by the CM-PC, the CM-PC-ADC sensor may be used with electronic dimmable ballasts.

A good example of the potential use of the CM-PC-ADC automatic dimming controller would a number of the areas with daylight harvesting opportunity in Terminal 1. In the large open ticketing area in Terminal 1, the existing metal halide fixtures could be replaced with new fluorescent fixtures with electronic dimmable ballasts to obtain (1) lighting power reduction due to more efficient lighting sources (fluorescent lighting is more efficient than HID light sources) and (2) fluorescent lighting is more appropriate for day lighting applications as previously discussed. As pointed out in this application, concurrently implementing day lighting with a lighting fixture retro-fit project can result in synergies for enhanced savings and cost effectiveness (lower paybacks).

The reader is directed to "Field Commissioning of a Daylight-Dimming Lighting System" written by David B. Floyd, Danny S. Parker of the Florida Solar Energy Center (FSEC – PF -283).

9.4.3. Fuel Cell Power Generation

A Fuel Cell (FC) is an electrochemical device that combines hydrogen fuel nd oxygen from the air to produce electricity, heat and water. Fuel cells operate without combustion, so they are virtually pollution free. Since the fuel is converted directly to electricity, a fuel cell can operate at much higher efficiencies than internal combustion engines, extracting more electricity from the same amount of fuel. The fuel cell itself has no moving parts - making it a quiet and reliable source of power. Fuel cell technology has been found suitable for a growing number of applications. The National Aeronautics and Space Administration (NASA) has used fuel cells for many years as the primary power source for space missions and currently uses fuel cells in the Space Shuttle program.

In our analysis we evaluated the feasibility and potential economics of installing a 200 kW Fuel Cell power generating systems at FLL with a budget cost of \$1,874 per kW installed or \$374,670. With an estimated annual energy production of 1,664,400 kWh and a consumption of 170,601 CCF of natural gas, the annual savings would be \$7,757 yielding a simple payback of 48 years. It is our recommendation that the Fuel Cell project should not be implemented due to the extended payback, but is a candidate for further consideration with government-provided funds or grants applied.

Budget projection for our analysis were supplied by the Department Of Energy ("DOE") Energy Efficiency and Renewable Energy and the Hydrogen, Fuel Cells & Infrastructure Technologies Program.

9.5. Combined Heat and Power

Intent

The intent is to evaluate the economic feasibility of a Combined Heat and Power (CHP) at Fort Lauderdale-Hollywood International Airport (FLL).

Introduction

The basic concepts behind cogeneration have been utilized by industry and utilities for many decades. Many early industrial facilities utilized on site steam systems, which powered manufacturing and foundry equipment, to also generate electricity. In 1882, Thomas Edison's Pearl Street Station functioned on the basic concepts of cogeneration to provide localized power facilities that distributed electrical and thermal energy short distances to nearby facilities.

The present model of electrical generation and distribution was established in 1896 when a method to transmit electricity effectively over long distances was invented using alternating current. This allowed electricity to be produced at one location and utilized at another location. While electricity can be transmitted economically over long distances, thermal energy cannot. Sprawling economic development patterns coupled with increasing economics of scale in power generation led to today's energy system. Inexpensive and apparently abundant fuel sources coupled with the above pattern of development directed power generation and thermal energy applications down separate and less efficient paths.

In today's world with rising fuel/energy costs, aging infrastructure, concerns over pollution, air quality, energy usage, and power quality and reliability the concepts and efficiencies of cogeneration present a viable method of total energy production.

In response to this need in 1998, the U.S. Department of Energy and the U.S. Environmental Protection Agency initiated the "CHP Challenge". The newly formed U.S. Combined Heat and Power Association (USCHPA) accepted the challenge and instituted the preparation of the National CHP Roadmap. This Roadmap charts a course for doubling the amount of CHP capacity in the United States by 2010.

Definitions of Cogeneration

Cogeneration is defined as the simultaneous production of electricity, heating and/or cooling in a single process and with an overall efficiency normally exceeding 70%, "thermal recycling". Cogeneration accounts for approximately 7% of total global power production and more than 40% in some European countries. Both the United States (USA) and the European Union (EU) have targets to double the share of cogeneration by 2010.

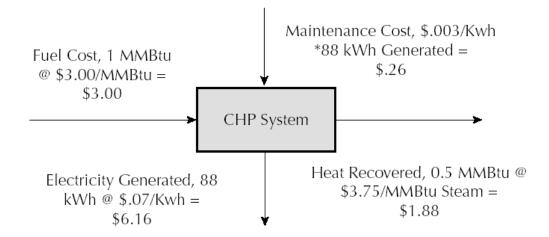
Cogeneration Plant

A typical Cogeneration power plant consists a combustion turbine (Brayton cycle) powered by almost any liquid or gas fossil fuel that creates shaft energy, which is usually converted to electricity via an electric generator. A heat recovery steam generator (HRSG) or hot water generator (HRHWG) that extracts heat from the approximately 1000° F turbine exhaust gases can satisfy the thermal loads of a facility.

Typical Cogeneration Power Plant Schematic

Similar to the combustion turbine/HRSG is its reciprocating engine driven counterpart. The two systems are very similar, but the prime mover of a reciprocating engine system is usually either a diesel engine or a natural gas spark ignition engine. Reciprocating systems are generally less costly to install initially than turbine-driven systems but require additional on-going maintenance. Steam turbine systems are powered by high-pressure steam generated in traditional fossil-fired boilers. The steam expands through the turbine creating shaft energy (usually driving an electric generator). In the back-pressure turbine configuration, low pressure steam exhausted from the turbine is distributed throughout the facility to meet thermal load requirements. A common variation of the back-pressure system is the extracting/condensing turbine. This turbine design provides the flexibility to either extract low-pressure steam for thermal load use or condense the steam for additional power generation similar to a traditional utility generation process.

Selection Guidelines


Many factors influence the system design selection process. However, perhaps the most important consideration is the thermal-to-electric (T/E) load ratio. Each system type presents slightly different thermodynamic considerations, which in turn affects how economically the system can meet a given thermal/electric load.

General System Costs

Generalizing potential system installation costs can be difficult due to the many design and site conditions that tend to be unique to each installation. However, some general pricing guidelines can be used for comparison. In general, system size is the biggest pricing issue. For example, a 1-MW gas turbine generator/HRSG system could be installed for \$1900 per kilowatt (kW) where a larger system of 5 megawatts (MW) could cost as little as \$750 per kW. These figures reflect relatively simple installation conditions and costs for system engineering and design. Providing a building to house the CHP system, routing electrical conductors a large distance from the new generator to the existing utility point of entry, and upsizing on-site gas distribution piping to accommodate increased gas consumption needs all increase complexity and system cost.

System Economic Feasibility

A major factor behind the economics of the ideal system is the assumption that 100% of the thermal energy recovered could be utilized to serve the facility load. Lower recovery rates produce different economics. For instance, if only 50% steam utilization were possible, then an excellent simple pay back (SPB) would increase to an insufficient SPB. Similarly, the facility load factor also plays a significant role in the system economics. In many cases, when a poor "natural" thermal/electric load match exists (usually due to low steam loads during summer months in northern climates), an "artificial" steam load can be created by installing absorption chillers, steam turbine drives for centrifugal chillers, or electric motors. In addition to improving the thermal/electrical load (and the system thermal efficiency), the electric summer peak load can be reduced as well as the associated installed power capacity requirement and initial cost.

The heat balance diagram above simply illustrates the cost of operation versus the energy savings while reflecting the ideal thermal balance for a CHP system.

Combined Heat and Power Plant Analysis at FLL

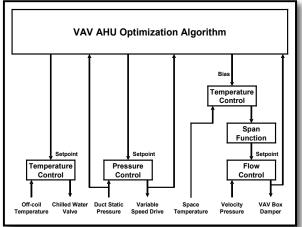
In our analysis we evaluated three (3) combinations of gas turbine generators and steam driven absorption chillers. In all cases the waste heat from the turbine was routed through a Heat Recovery Steam Generator (HRSG) and 100% of the steam was used to produce chilled water by the means of a double effect absorption chiller. See the appendix for the cogeneration plant analysis, including assumption, summaries and savings projects.

The table that follows illustrates the various scenarios analyzed with the 3rd scenario the most favorable for implementation.

Scenario	Turbine Generator	Chiller Capacity	Cooling delivered to load	Electricity delivered to load	Plant Efficiency	Plant Annual Savings	Simple Payback
#1	1,200	850	7,446,000	10,394	69.7%	-76,754	na
#2	4,600	2,500	19,763,053	36,364	67.2%	-94,185	na
#3	7,520	3,733	21,676,569	47,910	73.5%	492,300	24.4

Notes; (1) Turbine Generator listed in "kW" (2) Chiller capacity is in "Tons". (3) Cooling delivered to load in "Ton Hours" (4) Electricity delivered to load is in "MWh"

It is our recommendation that the Combined Heat & Power project should not be implemented due to the extended payback, but is a candidate for further consideration with government-provided funds or grants applied.


Budget and savings projection for our analysis where supplied by the RETScreen® International Combined Heat & Power (CHP) Project Model and is provided by the Natural Resources Canada (NRCan) and The Midwest CHP Application Center (MAC), operated for the Department Of Energy ("DOE"). ~~ Task 6: Energy Supply, Distribution and Conservation ~~

10. Control System Utilization and Optimization at FLL

10.1. VAV AHU Optimization

This strategy saves fan energy by minimizing the motor speed at all times. The challenges in optimizing the control of variable air volume air handling units include:

- Too low of a set point will cause comfort problems
- Too high of a set point will waste energy
- Too high of a set point will make control of the VAV box difficult
- Too high of a set point will cause acoustic noise in the VAV box
- At peak load, the system may not have sufficient capacity

- At very low load, the motor speed cannot be reduced below 40%
- Difficulty in knowing where to place the duct static pressure sensor(s)

Under normal load conditions, the VAV AHU optimization algorithm resets the duct static pressure setpoint to maximise energy savings. This resetting is done based on the damper positions of the VAV boxes. At peak load, if the system capacity is insufficient, an offset is added to the setpoint of the temperature control loops at the VAV boxes. VAV zones are prioritized so that lower priority areas have the highest amount of offset applied. This is sometimes called a "share the pain" approach.

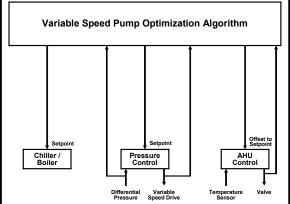
A simple database application, called a "VAV Box Report", can be implemented that uses Point History files maintained by the Building Management System installed at FLL. The Valve Report application analyzes the historical damper positions for all boxes and prepares a report indicating the valve that is most frequently the most open (i.e. the box that determines POSMAX). The management at FLL can review this report quarterly looking for a consistent pattern. If the VAV Box Report identifies that a damper is frequently the most open, energy can be saved by adjusting air balancing, increasing the size of the VAV box to allow greater reset of the fan speed.

Observations

The Building Management System installed at FLL has all of the necessary inputs and outputs to implement this energy conservation measure.

Assessment

Additional energy can be saved at FLL by implementing the variable speed pump optimization strategy as described.


Recommendations

FLL can implement a VAV AHU optimization program. A VAV Box Report application may be used to proactively explore the opportunity for increased energy savings through increased resetting of pressure setpoint.

10.2. Variable Speed Pump Optimization

This strategy saves pumping energy by minimizing the motor speed at all times. The challenges in optimizing the control of variable speed pumps are the same as the challenges in optimizing variable air volume air handling units:

- Too low of a set point will cause comfort problems
- Too high of a set point will waste energy
- Too high of a set point will make control of the end device difficult
- Too high of a set point will cause problems with the end device

- (cavitation in the case of AHU valve, acoustic noise in the case of VAV box)
- At peak load, the system may not have sufficient capacity
- At very low load, the motor speed cannot be reduced below 40%
- Difficulty in knowing where to place the pressure sensor (differential water pressure in the case of the pump, duct static pressure in the case of the AHU)

Under normal load conditions, the variable speed pump optimization algorithm resets the differential pressure set point to maximize energy savings. This resetting is done based on the valve positions of the air handling units. Air handling units are prioritized so that lower priority loads have the highest amount of offset applied. This is sometimes called a "share the pain" approach.

For most facilities, the delay between resetting the differential pressure set point should be at least 20 minutes. This gives the valves time to stabilize at their new positions.

A simple database application, called a "Valve Report", can be implemented that uses Point History files maintained by the Building Management System installed at FLL. The Valve Report application analyzes the historical valve positions for all valves and prepares a report indicating the valve that is most frequently the most open (i.e. the valve that determines POSMAX). The management at FLL can review this report quarterly looking for a consistent pattern. If the Valve Report identifies that a valve is frequently the most open, energy can be saved by repairing this condition (increasing the size of the valve or port) to allow greater reset of the variable speed pump.

Observations

The Building Management System installed at FLL has all of the necessary inputs and outputs to implement this energy conservation measure.

Assessment

Additional energy can be saved at FLL by implementing the variable speed pump optimization strategy as described.

Recommendations

FLL can implement a variable speed pump optimization program. A valve history report application may be used to proactively explore the opportunity for increased energy savings through increased resetting of differential pressure setpoint.

10.3. Retro-Commissioning

HVAC system operations often degrade over the life of a building, resulting in system performance well below original design. In addition to the loss of energy efficiency, system performance issues and changes in space use contribute to inadequate comfort control and ventilation. Retro-commissioning building systems based on current building use characteristics is a costeffective way of identifying specific system problems and addressing the problems.

The proven approach for retro-commissioning buildings follows the guidelines set forth in "A Practical Guide for Commissioning Existing Buildings" prepared by Oak Ridge National Laboratory and Portland Energy Commission, Inc. This approach to retro-commissioning goes beyond quick fix solutions to systematically optimize building systems so that they operate efficiently and effectively. This ECM will result in decreased energy consumption, improved occupant comfort and will set the stage for improvements in future maintenance of HVAC systems.

Existing Conditions

Many of the buildings at FLL were designed as state-of-the-art facilities with complex mechanical and energy management control systems. However, as is true with most facilities, actual operating conditions differ from design conditions and HVAC system operation has degraded over time. It is likely that some sensors and control components have fallen out of calibration, EMCS programming has been altered, and in some cases, building use and occupancy patterns have changed.

Terminals 1, 2, 3 and 4 were identified during analysis as being viable candidates for retro-commissioning. An example of a specific HVAC and EMCS issue identified during the Preliminary Audit is the heat recovery system serving terminal 1. The air-handling systems serving the building utilize significant amounts of outdoor air.

Recommendations

The project will provide labor and materials to inspect, test, and adjust the mechanical and EMCS systems to ensure the building HVAC systems are performing as near to optimal conditions, design conditions modified to meet

the needs of current building operating characteristics. This project will bring inoperative dampers and valves back into service, calibrate or replace sensors and controllers and optimize EMCS control sequences. Balancing of air distribution, and chilled water distribution systems within the facilities is included. Major repair or replacement of equipment such as, but not limited to motors, fans, coils, or piping systems is not part of this ECM.

A detailed Commissioning Report should be provided explaining the retrocommissioning process, problems encountered, solutions implemented, repairs required and suggestions for future system operation.

Energy Savings Calculations

Given the large savings opportunity available through the retrocommissioning of the four (4) terminals we are estimating a 10% savings of the estimated HVAC system utilities or about 4% of the total utilities (HVAC estimated at 40% of the total). We anticipate the simple payback to be approximately 2 to 3 years.

Appendix A – HVAC Data

A.1. Central Plant Analysis Data

Refer to the folder provided on the enclosed CD titled Central Plant Analysis Data that includes four PDF files.

Chiller Plant Summary.pdf

- 1.2 MKW cogen and chw plant.pdf
- 4.6 MKW cogen and chw plant.pdf
- 7.5 Mkw cogen and chw plant.pdf

A.2. HVAC Log Data

Refer to the folder provided on the enclosed CD titled HVAC Log Data that includes a number of sub folders that contain Excel spreadsheets of many HVAC data trends.

Appendix B – Lighting Data

B.1. Lighting Audit Data

Refer to the enclosed CD for the files:

Lighting Audit Data 1.pdf

Lighting Audit Data 2.pdf

Lighting Audit Data 3.pdf

B.2. Lighting System Log Data

Refer to the enclosed CD for the file: Lighting System Log Data.xls

Appendix C – Photovoltaic Data

C.1. Photovoltaic Project Data Option 1

Refer to the enclosed CD for the file: Photovoltaic.pdf

C.2. Photovoltaic Project Data Option 2

Refer to the enclosed CD for two SI Brochure 1.pdf and SI Brochure 2.pdf

A.1.

Central Plant Analysis Data

Plant Summary

		Projec	et			Location						
Fort Laud	erdale-H	ollywoo	d Interna	tional A	irport			Broward	d County	, Florida	a	
	Jan \$	Feb \$	Mar \$	Apr \$	May \$	Jun \$	Jul \$	Aug \$	Sep \$	Oct \$	Nov \$	Dec \$
Multiple Chiller	Plant (Alte	ernate 1)										
Chiller System #1	31500	30006	32683	33421	35792	36601	39200	39273	37460	35384	32156	31554
Chiller System #2	22700	22238	28103	33674	37528	38831	41597	41674	39746	36910	30138	23950
Multiple Chiller	Plant (Alte	ernate 2)										
Chiller System #1	25382	24837	27203	28899	31713	33292	36350	36424	34450	31230	27106	25583
Chiller System #2	18663	18908	23771	29370	33485	35528	38776	38854	36755	32824	25718	19791
			Total	Cost \$		Ton Hou	rs	Equiv.Ful	l Load Ho	urs	SPLV	
Multiple Chiller	Plant (Alte	ernate 1)								•		
Chiller System #1				4150	30		6651816		5	5794	0.74	44 kW/ton
Chiller System #2	2			3970	89		6280686		5	5053	0.73	37 kW/ton
		Total:		8121	19	1	12932502		5	5409	0.74	11 kW/ton
Multiple Chiller	Plant (Alte	ernate 2)										
Chiller System #1				3624	70		6651816		5	5794	0.62	25 kW/ton
Chiller System #2				3524	43		6280686		5	5053	0.62	29 kW/ton
		Total:		7149	12	1	12932502		5	5409	0.62	27 kW/ton

Chiller Summary

	Pro	oject				Location						
Fort Lauderdale	e-Hollyw	ood Int	ernation	al Airpo	ort	Broward County, Florida						
	Jan \$	Feb \$	Mar \$	Apr \$	May \$	Jun \$	Jul \$	Aug \$	Sep \$	Oct \$	Nov \$	Dec \$
Multiple Chiller System	ı (Alternat	e 1)										
CH-2 Centrif	20071	19254	20989	21720	23499	24267	26178	26228	24936	23216	20731	20139
CH-1 Centrif	14696	14548	18413	22347	25149	26269	28341	28395	26994	24720	19835	15553
Multiple Chiller System	ı (Alternat	e 2)										
CH-2 Centrif	16823	16536	18155	19519	21675	22952	25196	25243	23821	21384	18191	16992
CH-1 Centrif	12628	12889	16244	20271	23338	24954	27381	27433	25893	22924	17663	13437
]	Fotal Cost	\$	То	n Hours	Ec	quiv.Full I	.oad Hour	'S	SPLV	
Multiple Chiller System	ı (Alternat	e 1)										
CH-2 Centrif				271228		665	1816		57	94	0.48	4 kW/ton
CH-1 Centrif				265259		628	0686		50	53	0.49	0 kW/ton
	Total:			536487		1293	2502		54	09	0.48	7 kW/ton
Multiple Chiller System	ı (Alternat	e 2)										
CH-2 Centrif				246486		665	1816		57	94	0.42	5 kW/ton
CH-1 Centrif				245054		628	0686		50	53	0.43	8 kW/ton
	Total:			491540		1293	2502		54	09	0.43	1 kW/ton

Fort La	uderdale-	Proje Hollywoo	ect od Interna	tional A	irport		Bro	Location ward County	, Florida	
System					ller			Гуре	,	
	Multi	ple Alt #1			0	CH-2			Centrifugal	
(Chiller Inf	ormation				-	Deman	d Cost		
Energy Source	e:		Electric	Month	High Bin	Peak kW		het \$/kW	Diversity	Dmd Cost (\$)
Utility Type:			Electric	Jan	80=>84	4	58	n/a 8	.00 0.85	3111
Full Load (ton	s):		1148	Feb	85=>89	5	23	n/a 8	.00 0.85	3556
Full Load (kW	<i>V</i>):		638	Mar	85=>89	5	23	n/a 8	.00 0.85	3556
Design ECWT	(°F):		85.0	Apr	90=>94	5	98	n/a 8	.00 0.85	4063
Minimum ECV	WT (°F):		65.0	May	90=>94	5	98	n/a 8	.00 0.85	4063
Minimum RTI	D (°F):		18.0	Jun	90=>94	5	98	n/a 8	.00 0.85	4063
Average Cost/	kWh:		\$0.084	Jul	90=>94	5	98	n/a 8	.00 0.85	4063
Total kWh:			3234319	Aug	90=>94	5	98	n/a 8	.00 0.85	4063
Total Cost:			\$271228	Sep	90=>94	5	98	n/a 8	.00 0.85	4063
SPLV (kW/tor	n):		0.484	Oct	85=>89	5	23	n/a 8	.00 0.85	3556
Total Hours:			8762	Nov	85=>89	5	23	n/a 8	.00 0.85	3556
Average Cost/	Hour:		\$25.84	Dec	80=>84	4	58	n/a 8	.00 0.85	3111
Drive Speed:			Constant	Total						44826
					Energy Usa	ge Cost				
Temp Bin	Avg.WB	Tower	ECWT	Load		Draw		Energy Usage	Cost of	Cost/Hour
(°F)	(°F)	Appr (°F)	(°F)	(tons)	(kW/ton)	(kW)	Hours	(kWh)	Operation (
95=>99	80.0	6.5	*86.5	1127	0.566	638	0) ()	0.00
90=>94	78.0	6.4	84.4	1033	0.539	557	48	26736	5 18	372 38.99
85=>89	77.0	6.1	83.1	939	0.521	489	811	396579	277	34.23
80=>84	75.0	5.9	80.9	844	0.505	426	1788	761688	533	29.82
75=>79	72.0	5.8	77.8	749	0.491	368	2456	903808	632	267 25.76
70=>74	67.0	5.9	72.9	655	0.473	310	1716	531960	372	237 21.70
65=>69	63.0	5.8	68.8	560	0.464	260	921	239460	167	18.20
60=>64	58.0	10.0	68.0	970	0.445	432	489	211248	147	787 30.24
55=>59	53.0	12.0	65.0	773	0.429	332	281	93292	65	530 23.24
50=>54	48.0	17.0	65.0	655	0.434	284	156	44304	31	.01 19.88
45=>49	43.0	22.0	65.0	614	0.438	269	65	17485	12	18.83
40=>44	38.0	27.0	65.0	573	0.442	253	25	6325	5 4	43 17.71
35=>39	35.0	30.0	65.0	532	0.449	239	6	1434	1	00 16.73
30=>34	32.0	33.0	65.0	491	0.456	224	0) (0 0.00
25=>29	0.0	0.0	0.0	0	0.000	0	0	()	0 0.00
20=>24	0.0	0.0	0.0	0	0.000	0	0) ()	0 0.00
15=>19	0.0	0.0	0.0	0	0.000	0	0) ()	0 0.00
10=>14	0.0	0.0	0.0	0	0.000	0	0	()	0 0.00
5=>9	0.0	0.0	0.0	0	0.000	0	0	()	0 0.00
0=>4	0.0	0.0	0.0	0	0.000	0	0	()	0 0.00
Total/Avg:	69.0		75.7		0.484		8762	3234319	2264	25.84
				* ECWT	=> ECWT exc	eeds Design E	CWT			

Fort La	uderdale-	Proje Hollywoo	et od Interna	tional A	irport	Location Broward County, Florida					
System	uueruure	110119.000	/u meena		ller			Гуре	, 1 101 144		
5	Multi	ple Alt #1			(CH-1			Centrifugal		
(Chiller Inf	ormation				-	Deman	d Cost			
Energy Source	e:		Electric	Month	High Bin	Peak kW	Rate	het \$/kW	Diversity	Dmd Cost (\$)	
Utility Type:			Electric	Jan	80=>84	4	96	n/a 8	.00 0.85	3369	
Full Load (ton	s):		1243	Feb	85=>89	5	67	n/a 8	.00 0.85	3852	
Full Load (kW	<i>V</i>):		691	Mar	85=>89	5	67	n/a 8	.00 0.85	3852	
Design ECWT	(°F):		85.0	Apr	90=>94	6	47	n/a 8	.00 0.85	4400	
Minimum ECV	WT (°F):		65.0	May	90=>94	6	47	n/a 8	.00 0.85	4400	
Minimum RTI	D (°F):		18.0	Jun	90=>94	6	47	n/a 8	.00 0.85	4400	
Average Cost/	kWh:		\$0.086	Jul	90=>94	6	47	n/a 8	.00 0.85	4400	
Total kWh:			3095907	Aug	90=>94	6	47	n/a 8	.00 0.85	4400	
Total Cost:			\$265259	Sep	90=>94	6	47	n/a 8	.00 0.85	4400	
SPLV (kW/tor	n):		0.490	Oct	85=>89	5	67	n/a 8	.00 0.85	3852	
Total Hours:			7740	Nov	85=>89	5	67	n/a 8	.00 0.85	3852	
Average Cost/	Hour:		\$28.00	Dec	80=>84	4	96	n/a 8	.00 0.85	3369	
Drive Speed:			Constant	Total						48545	
					Energy Usa	age Cost					
Temp Bin	Avg.WB	Tower	ECWT	Load	- 8,	Draw		Energy Usage	Cost of	Cost/Hour	
(°F)	(°F)	Appr (°F)	(°F)	(tons)	(kW/ton)	(kW)	Hours	(kWh)	Operation (S		
95=>99	80.0	6.5	*86.5	1221	0.566	691	0	0		0 0.00	
90=>94	78.0	6.4	84.4	1119	0.539	603	48	28944	20	26 42.21	
85=>89	77.0	6.1	83.1	1016	0.521	530	811	429830	300	88 37.10	
80=>84	75.0	5.9	80.9	914	0.504	461	1788	824268	576	99 32.27	
75=>79	72.0	5.8	77.8	812	0.490	398	2456	977488	684	24 27.86	
70=>74	67.0	5.9	72.9	709	0.474	336	1716	576576	403	60 23.52	
65=>69	63.0	5.8	68.8	607	0.463	281	921	258801	181	16 19.67	
60=>64	58.0	0.0	0.0	0	0.000	0	0	0		0.00	
55=>59	53.0	0.0	0.0	0	0.000	0	C	0		0.00	
50=>54	48.0	0.0	0.0	0	0.000	0	C	0		0.00	
45=>49	43.0	0.0	0.0	0	0.000	0	0	0		0.00	
40=>44	38.0	0.0	0.0	0	0.000	0	C	0		0.00	
35=>39	35.0	0.0	0.0	0	0.000	0	0	0		0 0.00	
30=>34	32.0	0.0	0.0	0	0.000	0	0	0		0 0.00	
25=>29	0.0	0.0	0.0	0	0.000	0	0	0		0.00	
20=>24	0.0	0.0	0.0	0	0.000	0	0	0		0 0.00	
15=>19	0.0	0.0	0.0	0	0.000	0	0	0		0 0.00	
10=>14	0.0	0.0	0.0	0	0.000	0	0	0		0.00	
5=>9	0.0	0.0	0.0	0	0.000	0	0	0		0 0.00	
0=>4	0.0	0.0	0.0	0	0.000	0	0	0		0 0.00	
Total/Avg:	71.1		77.0		0.490		7740	3095907	2167	13 28.00	
				* ECWT	=> ECWT exc	ceeds Design E	CWT				

Fort La	uderdale-	Proje Hollywoo	ect od Interna	tional A	irport		Broy	Location ward County	, Florida	
System					ller			Type	,	
	Multi	ple Alt #2			(CH-2			Centrifugal	
(Chiller Inf	ormation				-	Deman	d Cost		
Energy Source	:		Electric	Month	High Bin	Peak kW	Rate	net \$/kW	Diversity	Dmd Cost (\$)
Utility Type:			Electric	Jan	80=>84	4	47	n/a 8.	00 0.85	3036
Full Load (ton	s):		1148	Feb	85=>89	5	26	n/a 8.	00 0.85	3577
Full Load (kW	<i>'</i>):		638	Mar	85=>89	5	26	n/a 8.	00 0.85	3577
Design ECWT	` (°F):		85.0	Apr	90=>94	6	12	n/a 8.	.00 0.85	4162
Minimum ECV	WT (°F):		65.0	May	90=>94	6	12	n/a 8.	00 0.85	4162
Minimum RTI	O (°F):		18.0	Jun	90=>94	6	12	n/a 8.	00 0.85	4162
Average Cost/	kWh:		\$0.086	Jul	90=>94	6	12	n/a 8.	00 0.85	4162
Total kWh:			2873376	Aug	90=>94	6	12	n/a 8.	00 0.85	4162
Total Cost:			\$246486	Sep	90=>94	6	12	n/a 8.	00 0.85	4162
SPLV (kW/tor	n):		0.425	Oct	85=>89	5	26	n/a 8.	00 0.85	3577
Total Hours:			8762	Nov	85=>89	5	26	n/a 8.	00 0.85	3577
Average Cost/	Hour:		\$22.96	Dec	80=>84	4	47	n/a 8.	00 0.85	3036
Drive Speed:			Variable	Total						45349
					Energy Usa	nge Cost				
Temp Bin	Avg.WB	Tower	ECWT	Load		Draw		Energy Usage	Cost of	Cost/Hour
(°F)	(°F)	Appr (°F)	(°F)	(tons)	(kW/ton)	(kW)	Hours	(kWh)	Operation (\$) (\$)
95=>99	80.0	6.4	*86.4	1127	0.584	658	0	0		0 0.00
90=>94	78.0	6.1	84.1	1033	0.548	566	48	27168	19	02 39.62
85=>89	77.0	5.5	82.5	939	0.518	486	811	394146	275	90 34.02
80=>84	75.0	5.0	80.0	844	0.482	407	1788	727716	509	40 28.49
75=>79	72.0	4.6	76.6	749	0.440	330	2456	810480	567	34 23.10
70=>74	67.0	4.4	71.4	655	0.386	253	1716	434148	303	90 17.71
65=>69	63.0	4.0	67.0	560	0.341	191	921	175911	123	14 13.37
60=>64	58.0	9.3	67.3	970	0.377	366	489	178974	125	
55=>59	53.0	12.0	65.0	773	0.335	259	281	72779	50	95 18.13
50=>54	48.0	17.0	65.0	655	0.327	214	156		23	37 14.98
45=>49	43.0	22.0	65.0	614	0.326		65			10 14.00
40=>44	38.0	27.0	65.0	573	0.325		25			26 13.02
35=>39	35.0		65.0	532	0.320		6			71 11.90
30=>34	32.0	33.0	65.0	491	0.316		0	0		0 0.00
25=>29	0.0	0.0	0.0	0	0.000	0	0	0		0 0.00
20=>24	0.0	0.0	0.0	0			0			0 0.00
15=>19	0.0	0.0	0.0	0			0			0 0.00
10=>14	0.0	0.0	0.0	0	0.000	0	0	0		0 0.00
5=>9	0.0	0.0	0.0	0	0.000	0	0			0 0.00
0=>4	0.0	0.0	0.0	0	0.000	0	0			0 0.00
Total/Avg:	69.0		74.6		0.425		8762	2873376	2011	36 22.96
				* ECWT	=> ECWT exc	eeds Design E	CWT			

Fort La	uderdale-	Proje Hollywoo	ect o d Interna	tional A	irport		Brov	Location vard County,	Florida	
System		v			iller			ype		
	Multi	ple Alt #2			(CH-1		(Centrifugal	
	Chiller Inf	ormation					Deman	d Cost		
Energy Source	e:		Electric	Month	High Bin	Peak kW	Ratch	et \$/kW	Diversity	Dmd Cost (\$)
Utility Type:			Electric	Jan	80=>84			n/a 8.	00 0.85	3298
Full Load (ton	s):		1243		85=>89	5	71	n/a 8.	00 0.85	3883
Full Load (kW	/):		691	Mar	85=>89	5	71	n/a 8.	00 0.85	3883
Design ECW1	(°F):		85.0	Apr	90=>94	6	63	n/a 8.	00 0.85	4508
Minimum EC	WT (°F):		65.0	May	90=>94	6	63	n/a 8.	00 0.85	4508
Minimum RTI	D (°F):		18.0	Jun	90=>94	6	63	n/a 8.	00 0.85	4508
Average Cost/	'kWh:		\$0.088	Jul	90=>94	6	63	n/a 8.	00 0.85	4508
Total kWh:			2798241	Aug	90=>94	6	63	n/a 8.	00 0.85	4508
Total Cost:			\$245054	Sep	90=>94	6	63	n/a 8.	00 0.85	4508
SPLV (kW/tor	n):		0.438	Oct	85=>89	5	71	n/a 8.	00 0.85	3883
Total Hours:			7740	Nov	85=>89	5	71	n/a 8.	00 0.85	3883
Average Cost/	Hour:		\$25.31	Dec	80=>84	4	85	n/a 8.	00 0.85	3298
Drive Speed:			Variable	Total						49178
					Energy Usa	age Cost				
Tama Dia	A	T	ECWT	Land		r i		En anon Usa as	Castaf	Cost/Hour
Temp Bin (°F)	Avg.WB (°F)	Tower Appr (°F)	ECWT (°F)	Load (tons)	(kW/ton)	Draw (kW)	Hours	Energy Usage (kWh)	Cost of Operation (\$)	
95=>99	80.0	6.5	*86.5	1221	0.583	, é	0	0		0 0.00
90=>94	78.0	6.1	84.1	1119	0.549		48	29472	206	
85=>89	77.0	5.5	82.5	1016			811	428208	2997	
80=>84	75.0	5.0	80.0	914			1788	790296	5532	
75=>79	72.0	4.6	76.6	812	0.444		2456	884160	6189	
70=>74	67.0	4.4	71.4	709	0.389		1716	473616	3315	
65=>69	63.0	4.0	67.0	607	0.344		921	192489	1347	
60=>64	58.0	0.0	0.0	007			0	0		0 0.00
55=>59	53.0	0.0	0.0	0			0	0		0 0.00
50=>54	48.0	0.0	0.0	0			0	-		0 0.00
45=>49	43.0	0.0	0.0	0			0	0		0 0.00
40=>44	38.0	0.0	0.0	0			0	-		0.00
35=>39	35.0		0.0	0		-	0	-		0.00
30=>34	32.0	0.0	0.0	0		•	0	0		0.00
25=>29	0.0	0.0	0.0	0			0	0		0.00
20=>24	0.0	0.0	0.0	0			0			0.00
15=>19	0.0	0.0	0.0	0			0			0 0.00
10=>14	0.0	0.0	0.0	0			0			0.00
5=>9	0.0	0.0	0.0	0			0			0.00
0=>4	0.0	0.0	0.0	0			0	-		0.00
Total/Avg:	71.1	0.0	75.8	0	0.438		7740	-	19587	
Total/Avg.	/1.1		15.0	* ECUIT		eeds Design E		2770241	17507	, 25.51

]	Project		Location							
Fort Lauderdale-Holly	wood Inte	rnational Airport		Brow	ard Coun	ty, Flori	da			
System		Chiller	•	T	уре					
Multiple Al	t #1		CH-2 Centrifugal							
		Design Cor	nditions Data							
Energy Source:	Electr	ic		Pa	rt Load Ene	rgy Mode:		Computer		
Utility Type:	Electr	ic		Te	ower Approa	ch (°F):		7.0		
Drive Speed:	Consta	nt								
Condenser Cooling:	Wat	er					Evap	Cond		
ECWT Source: Varies v	w/ WB (Towe	r)		Eı	ntering Temp	o (°F):	49.7	85.0		
Full Load (tons):	114	18		L	eaving Temp	• (°F):	44.0	93.9		
Full Load (kW/ton):	0.55	56		Pı	ess.Drop (ft.	H2O):	9.0	22.0		
Full Load (kW):	63	8		Ti	ube Approact	h (°F):	4.0	4.0		
Building Load Dat	a	Local Contro	ls Data		Uti	lity Rate I	Data			
Building Load Mode:	Computer	LCHWT Ctl.Type:	Constant	Month	\$/kWh	Ratchet	\$/kW	Diversity		
Design OADB (°F):	95.0	Control Type:	Min ECWT	Jan	0.07000	n/a	8.00	0.85		
Design OAWB (°F):	78.0	Minimum ECWT (°F):	65.0	Feb	0.07000	n/a	8.00	0.85		
Load @ Design OADB (tons):	2250	Minimum RTD (°F):	18.0	Mar	0.07000	n/a	8.00	0.85		
Weather Bal. Temperature (°F):	55.0			Apr	0.07000	n/a	8.00	0.85		
Drop @ Wthr.Bal.Temp (tons):	0			May	0.07000	n/a	8.00	0.85		
Min DB Operating Temp (°F):	30.0			Jun	0.07000	n/a	8.00	0.85		

Drop @ w un. Dai. i chip (tons).	0		Iviay	0.07000	II/ a	0.00	0.
Min DB Operating Temp (°F):	30.0		Jun	0.07000	n/a	8.00	0.
			Jul	0.07000	n/a	8.00	0
Load Line Paramete	rs		Aug	0.07000	n/a	8.00	0.
Load Line Type:	Light Load		Sep	0.07000	n/a	8.00	0
%Design @ Wthr.Bal.Temp:	30		Oct	0.07000	n/a	8.00	0
%Design @ Min Temp.Bin:	10		Nov	0.07000	n/a	8.00	0.
			Dec	0.07000	n/a	8.00	0
			Avg	0.07000	n/a	8.00	0

	Temperature Bin Data												
Temp Bin (°F)	Average WB (°F)	Tower Appr (°F)	ECWT (°F)	Building Load (tons)	Load (tons)	Part Load (kW)							
95=>99	80.0	6.5	*86.5	2348	1127	638							
90=>94	78.0	6.4	84.4	2152	1033	557							
85=>89	77.0	6.1	83.1	1955	939	489							
80=>84	75.0	5.9	80.9	1758	844	426							
75=>79	72.0	5.8	77.8	1561	749	368							
70=>74	67.0	5.9	72.9	1364	655	310							
65=>69	63.0	5.8	68.8	1167	560	260							
60=>64	58.0	10.0	68.0	970	970	432							
55=>59	53.0	12.0	65.0	773	773	332							
50=>54	48.0	17.0	65.0	655	655	284							
45=>49	43.0	22.0	65.0	614	614	269							
40=>44	38.0	27.0	65.0	573	573	253							
35=>39	35.0	30.0	65.0	532	532	239							
30=>34	32.0	33.0	65.0	491	491	224							
25=>29	0.0	0.0	0.0	0	0	0							
20=>24	0.0	0.0	0.0	0	0	0							
15=>19	0.0	0.0	0.0	0	0	0							
10=>14	0.0	0.0	0.0	0	0	0							
5=>9	0.0	0.0	0.0	0	0	0							
0=>4	0.0	0.0	0.0	0	0	0							
		* ECWT =>	ECWT exceeds Des	ign ECWT									

	Project		Location						
Fort Lauderdale-Holly	wood Inte	rnational Airport		Brow	vard Cour	nty, Floria	la		
System		Chiller		Т	уре				
Multiple A	lt #1		CH-1			Centrif	fugal		
		Design Cor	ditions Data						
Energy Source:	Electr	ric		Р	art Load Ene	rgy Mode:		Computer	
Utility Type:	Electr	ric		Т	ower Approa	ich (°F):		7.0	
Drive Speed:	Consta	Int							
Condenser Cooling:	Wat	er		Evap Cond					
ECWT Source: Varies	w/ WB (Towe	er)		E	ntering Temp	o (°F):	56.0	85.0	
Full Load (tons):	124	43		L	eaving Temp	• (°F):	49.8	94.6	
Full Load (kW/ton):	0.55	56		P	ress.Drop (ft.	.H2O):	9.0	22.0	
Full Load (kW):	69	91		Т	ube Approac	h (°F):	4.0	4.0	
Building Load Dat	ta	Local Control	ls Data		Uti	lity Rate I	Data		
Building Load Mode:	Computer	LCHWT Ctl.Type:	Constant	Month	\$/kWh	Ratchet	\$/kW	Diversity	
Design OADB (°F):	95.0	Control Type:	Min ECWT	Jan	0.07000	n/a	8.00	0.85	
Design OAWB (°F):	78.0	Minimum ECWT (°F):	65.0	Feb	0.07000	n/a	8.00	0.85	
Load @ Design OADB (tons):	2250	Minimum RTD (°F):	18.0	Mar	0.07000	n/a	8.00	0.85	
Weather Bal.Temperature (°F):			Apr	0.07000	n/a	8.00	0.85		
Dron @ Wthr Bal Temp (tons):	0			May	0.07000	n/a	8.00	0.85	

Weather Bal. Temperature (°F):	55.0	Apr	0.07000	n/a	8.00	0.85
Drop @ Wthr.Bal.Temp (tons):	0	May	0.07000	n/a	8.00	0.85
Min DB Operating Temp (°F):	30.0	Jun	0.07000	n/a	8.00	0.85
		Jul	0.07000	n/a	8.00	0.85
Load Line Parameter	·s	Aug	0.07000	n/a	8.00	0.85
Load Line Type:	Light Load	Sep	0.07000	n/a	8.00	0.85
%Design @ Wthr.Bal.Temp:	30	Oct	0.07000	n/a	8.00	0.85
%Design @ Min Temp.Bin:	10	Nov	0.07000	n/a	8.00	0.85
		Dec	0.07000	n/a	8.00	0.85
		Avg	0.07000	n/a	8.00	0.85

	Temperature Bin Data												
Temp Bin (°F)	Average WB (°F)	Tower Appr (°F)	ECWT (°F)	Building Load (tons)	Load (tons)	Part Load (kW)							
95=>99	80.0	6.5	*86.5	2348	1221	691							
90=>94	78.0	6.4	84.4	2152	1119	603							
85=>89	77.0	6.1	83.1	1955	1016	530							
80=>84	75.0	5.9	80.9	1758	914	461							
75=>79	72.0	5.8	77.8	1561	812	398							
70=>74	67.0	5.9	72.9	1364	709	336							
65=>69	63.0	5.8	68.8	1167	607	281							
60=>64	58.0	0.0	0.0	970	0	0							
55=>59	53.0	0.0	0.0	773	0	0							
50=>54	48.0	0.0	0.0	655	0	0							
45=>49	43.0	0.0	0.0	614	0	0							
40=>44	38.0	0.0	0.0	573	0	0							
35=>39	35.0	0.0	0.0	532	0	0							
30=>34	32.0	0.0	0.0	491	0	0							
25=>29	0.0	0.0	0.0	0	0	0							
20=>24	0.0	0.0	0.0	0	0	0							
15=>19	0.0	0.0	0.0	0	0	0							
10=>14	0.0	0.0	0.0	0	0	0							
5=>9	0.0	0.0	0.0	0	0	0							
0=>4	0.0	0.0	0.0	0	0	0							
	<u>.</u>	* ECWT =>	ECWT exceeds Des	ign ECWT									

York International Cost of Operation

0.07000

Avg

n/a

8.00

0.85

Fort Lauderdale-Holly	Project	rnationa	l Airnort		Brow	Locatio vard Coun		10	
System	woou Inte	1 114110114	Chiller			ype	ity, 1101 it	14	
Multiple A	lt #2		Chine	СН-2	1	ype	Centri	fugal	
								8.	
			0	97.0 Part Load Energy Mode:					
Energy Source:	Electr	ic VSD Ef	ficiency (%):						Computer
Utility Type:	Electr				T	ower Approa	ch (°F):		7.0
Drive Speed:	Variab	le							
Condenser Cooling:	Wat							Evap	
	w/ WB (Towe	,				ntering Temp		49.7	85.0
Full Load (tons):	114	-				eaving Temp		44.0	93.9
Full Load (kW/ton):	0.5	-				ress.Drop (ft.		9.0	22.0
Full Load (kW):	6.	38			T	ube Approact	h (°F):	4.0	4.0
Building Load Dat	a]	Local Contro	ls Data		Uti	lity Rate I	Data	
Building Load Mode:	Computer	LCHWT C	Ctl.Type:	Constant	Month	\$/kWh	Ratchet	\$/kW	Diversity
Design OADB (°F):	95.0	Control Ty	/pe:	Min ECWT	Jan	0.07000	n/a	8.00	0.85
Design OAWB (°F):	78.0	Minimum	ECWT (°F):	65.0	Feb	0.07000	n/a	8.00	0.85
Load @ Design OADB (tons):	2250	Minimum	RTD (°F):	18.0	Mar	0.07000	n/a	8.00	0.85
Weather Bal. Temperature (°F):	55.0				Apr	0.07000	n/a	8.00	0.85
Drop @ Wthr.Bal.Temp (tons):	0				May	0.07000	n/a	8.00	0.85
									0.85
Min DB Operating Temp (°F):	30.0				Jun	0.07000	n/a	8.00	0.85
	30.0				Jun Jul	0.07000	n/a n/a	8.00 8.00	0.85
						0.07000			
Min DB Operating Temp (°F):					Jul	0.07000 0.07000 0.07000	n/a	8.00	0.85
Min DB Operating Temp (°F):	rs				Jul Aug	0.07000 0.07000	n/a n/a	8.00 8.00	0.85 0.85
Min DB Operating Temp (°F): Load Line Paramete Load Line Type:	rs Light Load				Jul Aug Sep	0.07000 0.07000 0.07000	n/a n/a n/a	8.00 8.00 8.00	0.85 0.85 0.85
Min DB Operating Temp (°F): Load Line Paramete Load Line Type: %Design @ Wthr.Bal.Temp:	rs Light Load 30				Jul Aug Sep Oct	0.07000 0.07000 0.07000 0.07000	n/a n/a n/a n/a	8.00 8.00 8.00 8.00	0.85 0.85 0.85 0.85

		Te	mperature Bin Da	ta		
Temp Bin (°F)	Average WB (°F)	Tower Appr (°F)	ECWT (°F)	Building Load (tons)	Load (tons)	Part Load (kW)
95=>99	80.0	6.4	*86.4	2348	1127	658
90=>94	78.0	6.1	84.1	2152	1033	566
85=>89	77.0	5.5	82.5	1955	939	486
80=>84	75.0	5.0	80.0	1758	844	407
75=>79	72.0	4.6	76.6	1561	749	330
70=>74	67.0	4.4	71.4	1364	655	253
65=>69	63.0	4.0	67.0	1167	560	191
60=>64	58.0	9.3	67.3	970	970	366
55=>59	53.0	12.0	65.0	773	773	259
50=>54	48.0	17.0	65.0	655	655	214
45=>49	43.0	22.0	65.0	614	614	200
40=>44	38.0	27.0	65.0	573	573	186
35=>39	35.0	30.0	65.0	532	532	170
30=>34	32.0	33.0	65.0	491	491	155
25=>29	0.0	0.0	0.0	0	0	0
20=>24	0.0	0.0	0.0	0	0	0
15=>19	0.0	0.0	0.0	0	0	0
10=>14	0.0	0.0	0.0	0	0	0
5=>9	0.0	0.0	0.0	0	0	0
0=>4	0.0	0.0	0.0	0	0	0
	÷	* ECWT =>	ECWT exceeds Des	ign ECWT	·	

York International Cost of Operation

0.07000

0.07000

Dec

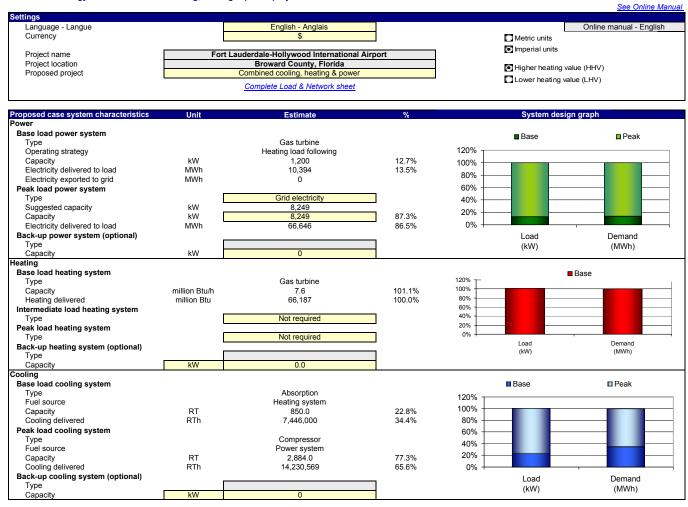
Avg

Project Fort Lauderdale-Hollywood I	ntornations	Ainport		Dwor	Locatio		da	
System	nternationa	Chiller			y ard Coun ype	ity, riorio	ua	
Multiple Alt #2		Chine	CH-1	1	ype	Centri	fugal	
A							8	
		<u> </u>	ditions Data					
	lectric VSD E	fficiency (%):			art Load Ene			Computer
- · · · · · · · · · · · · · · · · · · ·	lectric			T	ower Approa	ch (°F):		7.0
· · · · · · · · · · · · · · · · · · ·	riable							
Condenser Cooling:	Water						Evap	- Cond
ECWT Source: Varies w/ WB (T	ower)			E	ntering Temp	o (°F):	56.0	85.0
Full Load (tons):	1243			L	eaving Temp	(°F):	49.8	94.6
Full Load (kW/ton):	0.556			Pi	ess.Drop (ft.	H2O):	9.0	22.0
Full Load (kW):	691			T	ube Approac	h (°F):	4.0	4.0
Building Load Data		Local Control	ls Data		Uti	lity Rate I	Data	
Building Load Mode: Comp	uter LCHWT	Ctl.Type:	Constant	Month	\$/kWh	Ratchet	\$/kW	Diversity
Design OADB (°F):	5.0 Control T	ype:	Min ECWT	Jan	0.07000	n/a	8.00	0.85
	8.0 Minimum		65.0	Feb	0.07000	n/a	8.00	0.85
Load @ Design OADB (tons): 2	250 Minimum	RTD (°F):	18.0	Mar	0.07000	n/a	8.00	0.85
	250 <u>Minimum</u> 55.0	RTD (°F):	18.0	Mar Apr	0.07000	n/a n/a	8.00 8.00	0.85 0.85
Weather Bal. Temperature (°F):		RTD (°F):	18.0					
Weather Bal.Temperature (°F): Drop @ Wthr.Bal.Temp (tons):	55.0	RTD (°F):	18.0	Apr	0.07000	n/a	8.00	0.85
Weather Bal.Temperature (°F): Drop @ Wthr.Bal.Temp (tons):	55.0 0	RTD (°F):	18.0	Apr May	0.07000 0.07000	n/a n/a	8.00 8.00	0.85 0.85
Weather Bal.Temperature (°F): Drop @ Wthr.Bal.Temp (tons):	55.0 0	<u>RTD (°F):</u>	18.0	Apr May Jun	0.07000 0.07000 0.07000	n/a n/a n/a	8.00 8.00 8.00	0.85 0.85 0.85
Weather Bal.Temperature (°F): Drop @ Wthr.Bal.Temp (tons): Min DB Operating Temp (°F):	55.0 0 30.0	<u>RTD (°F):</u>	18.0	Apr May Jun Jul	0.07000 0.07000 0.07000 0.07000 0.07000	n/a n/a n/a n/a	8.00 8.00 8.00 8.00	0.85 0.85 0.85 0.85
Weather Bal.Temperature (°F): Drop @ Wthr.Bal.Temp (tons): Min DB Operating Temp (°F):	55.0 0 30.0	<u>RTD (°F):</u>	18.0	Apr May Jun Jul Aug	0.07000 0.07000 0.07000 0.07000 0.07000	n/a n/a n/a n/a n/a	8.00 8.00 8.00 8.00 8.00 8.00	0.85 0.85 0.85 0.85 0.85

		Te	mperature Bin Da	ıta		
Temp Bin (°F)	Average WB (°F)	Tower Appr (°F)	ECWT (°F)	Building Load (tons)	Load (tons)	Part Load (kW)
95=>99	80.0	6.5	*86.5	2348	1221	712
90=>94	78.0	6.1	84.1	2152	1119	614
85=>89	77.0	5.5	82.5	1955	1016	528
80=>84	75.0	5.0	80.0	1758	914	442
75=>79	72.0	4.6	76.6	1561	812	360
70=>74	67.0	4.4	71.4	1364	709	276
65=>69	63.0	4.0	67.0	1167	607	209
60=>64	58.0	0.0	0.0	970	0	0
55=>59	53.0	0.0	0.0	773	0	0
50=>54	48.0	0.0	0.0	655	0	0
45=>49	43.0	0.0	0.0	614	0	0
40=>44	38.0	0.0	0.0	573	0	0
35=>39	35.0	0.0	0.0	532	0	0
30=>34	32.0	0.0	0.0	491	0	0
25=>29	0.0	0.0	0.0	0	0	0
20=>24	0.0	0.0	0.0	0	0	0
15=>19	0.0	0.0	0.0	0	0	0
10=>14	0.0	0.0	0.0	0	0	0
5=>9	0.0	0.0	0.0	0	0	0
0=>4	0.0	0.0	0.0	0	0	0
		* ECWT =>	ECWT exceeds Des	ign ECWT		

8.00

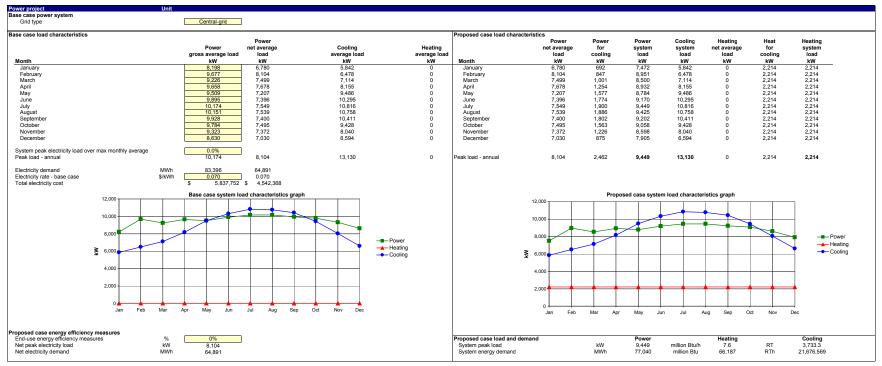
8.00


n/a

n/a

0.85

0.85


RETScreen Energy Model - Combined cooling, heating & power project

	Fuel			Energy	
	consumption -	Fuel	Capacity	delivered	Clean Energy
Fuel type	unit	consumption	(kW)	(MWh)	production credit?
Natural gas	mmBtu	145,777	1,200	10,394	
Electricity	MWh	66,646	8,249	66,646	
		Total	9,449	77,040	-
		_			
Recovered heat			2,239	19,397	
		Total	2,239	19,397	-
		=			=
Heating system			2,989	26,186	
Power system			10,143	50,047	
		Total	13,132	76,233	
	Natural gas Electricity Recovered heat Heating system	Fuel type consumption - unit Natural gas mmBtu Electricity Recovered heat MWh	Consumption - Fuel type Fuel unit Fuel consumption Natural gas mmBtu 145,777 Electricity MWh 66,646 Total	Fuel typeConsumption - unitFuel consumptionCapacity (kW)Natural gasmmBtu145,7771,200ElectricityMWh66,6468,249Total9,4499,449Recovered heat2,239Heating system2,989	Fuel typeconsumption - unitFuel consumptionCapacity (kW)delivered (MWh)Natural gasmmBtu145,7771,20010,394ElectricityMWh66,6468,24966,646Total9,44977,040Recovered heat2,23919,397Heating system2,98926,186

Heating project	Unit							
84 144								
Site conditions Nearest location for weather data	Estimate Fort Lauderdale Hollywood	Notes/Range See Weather Database	Monthly inputs °C-d	°F-d	°C-d °F-d	°C	-d °F-d	
		-40 to 15 °C	Month <18°C		<18°C <65°F	Month <1		
Heating design temperature	°C 10.6 51.1 °F				<18°C <65°F		-C <65"F	
Annual heating degree-days below 18°C	°C-d 0 0 °F-d	Complete Monthly inputs	January 0	0 May	0 0	September (0 0	See Weather Database
Domestic hot water heating base demand	% 10%	0% to 25%	February 0	0 June	0 0	October (0	
Equivalent degree-days for DHW heating	°C-d/d 0.0	0 to 10 °C-d/d	March 0	0 July	0 0	November (0	
Equivalent full load hours	h 143	-	April 0	0 August	0 0	December (0 0	
Base case heating system	Single building - space heating							
Heated floor area for building	ft ² 1,280,000							
Fuel type	Electricity							
Seasonal efficiency	% 100%							
Heating load calculation								
Heating load for building	Btu/ft ² 0.0							
Total heating demand	million Btu 0							
Total peak heating load	million Btu/h 0.0							
Fuel consumption - annual	MWh 0							
Fuel rate	\$/kWh 0.000							
Fuel cost	S -							
Proposed case energy efficiency measures								
End-use energy efficiency measures	% 0%							
Net peak heating load	million Btu/h 0.0							
Net heating demand	million Btu 0							

Cooling project	Unit												
Site conditions		Estimate	Notes/Range	Monthly input	s								
Nearest location for weather data	F	ort Lauderdale Hollywood	See Weather Database		°C-d	°F-d		°C-d	°F-d		°C-d	°F-d	
Cooling design temperature	°C	32.7 90.9 °F	10 to 47 °C	Month	>10°C	>50°F	Month	>10°C	>50°F	Month	>10°C	>50°F	
Annual cooling degree-days above 10°C	°C-d	5,445 9,802 °F-d	Complete Monthly inputs	January	313	564	May	508	915	September	540	972	See Weather Database
Non-weather dependant cooling	%	0%	5% to 30%	February	314	564	June	534	961	October	505	910	
Equivalent full load hours	h	5,806		March	381	686	July	580	1,043	November	417	751	
				April	423	761	August	577	1,038	December	353	636	
Base case cooling system	S	ingle building - space cooling											
Cooled floor area for building	ft ²	1,280,000											
Fuel type		Electricity											
Seasonal efficiency	%	412%											
Cooling load calculation													
Cooling load for building	Btu/ft ²	35.0											
Total cooling demand	RTh	21,676,569											
Total peak cooling load	RT	3,733.3											
Fuel consumption - annual	MWh	18,505											
Fuel rate	\$/kWh	0.070											
Fuel cost		\$ 1,295,383											
Proposed case energy efficiency measures	_												
End-use energy efficiency measures	%	0%											
Net peak cooling load	RT	3,733.3											
Net cooling demand	RTh	21,676,569											

Complete Equipment Selection sheet

Complete Equipment Selection sheet

RETScreen Equipment Selection - Combined cooling, heating & power project

RETScreen Equipment Selection - Combined	5,						Show	v alternative uni	ts
Proposed case cooling system						Propose	ed case system loa	d characteris	tics graph
Base load cooling systen					kW	12,000			
Туре		Absorption		1					
Fuel source		Heating system		-		10,000			
Capacity	RT	850.0	22.8%	See product database		10,000			
Seasonal efficiency	%	135%							
Manufacturer	,-	Mitsubishi Electric		1		8,000			
Model		MDUE-2500H		1 unit(s)		T			
Cooling delivered	RTh	7,446,000	34.4%	MWh	26,186	6,000	*		
Peak load cooling systen	RIII	7,440,000	34.4 /0		20,100	-,			
		0		7		4.000			
Туре		Compressor		1		4,000			
Fuel source		Power system							
Suggested capacity	RT	2,883.3		kW	10,140	2,000 🔶			+ + +
Capacity	RT	2,884.0	77.3%	See product database	<u>.</u>				
Seasonal efficiency	%	412%		-		0			
Manufacturer		Trane					eb Mar Apr May Ju	n Jul Aun Ser	
Model		CVHE-1250		1 unit(s)					
Cooling delivered	RTh	14,230,569	65.6%	MWh	50,047	-B-Po	wer 📥 He	ating -	Cooling
roposed case power system System selection		Base load system		1					
ase load power system				1					
Туре		Gas turbine		1					
Availability	%	Gastarbille	100.0%	8,760 h					
Availability	70	L	100.0%	0,700 11					
Fuel selection method		Single fuel		1					
Fuel type		Natural gas - mmBtu		-					
Fuel rate	C (mar Dha			1					
Fuel fale	\$/mmBtu	8.570							
Gas turbine									
Power capacity	kW	1,200	12.7%	See product database					
Minimum capacity	%	40%							
Electricity delivered to load	MWh	10,394	13.5%						
Electricity exported to grid	MWh	0							
Manufacturer		Solar Turbines		1					
Model		Saturn 20		1 unit(s)					
Heat rate	Btu/kWh	14,025		i unit(3)					
	<u>Blu/Kvvii</u> %	60%							
Heat recovery efficiency				0.1/5	47.0				
Fuel required	million Btu/h	16.8		GJ/h kW	17.8 2.239.4				
Heating capacity	million Btu/h	7.6	101.1%	KVV	2,239.4				
perating strategy - base load power syster									
Fuel rate - base case heating systen	\$/MWh	0.00		\$/kWh	0.000				
Electricity rate - base case	\$/MWh	70.00		\$/kWh	0.070				
Fuel rate - proposed case power system	\$/MWh	29.24		\$/kWh	0.029				
Electricity export rate	\$/MWh	70.00		\$/kWh	0.070				
Electricity rate - proposed case	\$/MWh	70.00		\$/kWh	0.070				
				Remaining		Remaining			
		Electricity delivered	Electricity	electricity	Heat	heat	Power	Operating	
		to load	exported to grid	required	recovered	required	system fuel	profit (loss)	Efficiend
Operating strategy		MWh	MWh	MWh	million Btu	million Btu	million Btu	\$	%
Full power capacity outpu		10,512	0	66,528	66,187	0	147,431	-527,642	69.2%
Power load following		10,512	0	66.528	66,187	0	147,431	-527,642	69.2%
Heating load following		10,394	ŏ	66,646	66,187	ŏ	145,777	-521,724	69.7%
		,	•			-	,		00.170
				_					
Select operating strategy		Heating load following		1					
				-					

Return to Energy Model sheet

RETScreen Cost Analysis - Combined cooling, heating & power project

ttings - Fort Lauderdale-Hollywood Inter			-	Ja				
Pre-feasibility analysis		Cost reference		C	ost reference	None		
Feasibility analysis		Second curre	ency			None		
tial costs (crodits)		Unit	Quantity		Unit cost		nt Relative costs	
tial costs (credits) Feasibility study		Unit	Quantity		- Onit Cost	Amour	Relative costs	
Feasibility study		cost	1	\$	7,500	\$ 7,50	0	
r casibility study	Sub-total:	CUSI		φ	7,500	\$7,50 \$7,50		
Development	Sub-Iolai.					ֆ /,50	0.2%	
Development			4	6	25.000	¢ 25.00	0	
Development		cost	1	\$	35,000	\$ 35,00		
F	Sub-total:					\$ 35,00	0 1.1%	
Engineering				•	475.000	A 475.00		
Engineering		cost	1	\$	175,000			
	Sub-total:					\$ 175,00	0 5.4%	
Power system								
Base load - Gas turbine		kW	1,200	\$		\$ 750,00	0	
Peak load - Grid electricity		kW	8,249			\$	-	
Road construction		km				\$	-	
Transmission line		km				\$	-	
Substation		project				\$	-	
Energy efficiency measures		project				\$	-	
Custom		credit				\$ \$		
Ouston		cieuit	-	+		ֆ \$	-	
	Cub total						- 00.00/	
11 <i></i>	Sub-total:					\$ 750,00	0 23.2%	
Heating system						•		
Base load - Gas turbine		kW	2,239.4			\$	-	
Energy efficiency measures		project				\$	-	
HRSG		cost	1	\$		\$ 304,00	0	
						\$	-	
	Sub-total:					\$ 304,00	0 9.4%	
Cooling system						,		
Base load - Absorption		RT	850.0	\$	1,000	\$ 850,00	0	
Peak load - Compressor		RT	2,884.0	-		\$ 000,00	-	
Energy efficiency measures		project	2,00-1.0			\$ \$		
Energy eniciency measures		cost	1			ֆ \$	_	
		CUSI				ֆ \$	-	
	Sub-total:					\$ 850.00	- 0 26.3%	
D. I	Sub-lolar:					ə 850,00	0 20.3%	
Balance of system & miscellaneous							_	
Balance of system & miscellaneous		cost	1	\$	756,900			
Contingencies	-	%	10.0%	\$		\$ 287,84		
Interest during construction		8.00%	6 month(s)	\$		\$ 63,32		
	Sub-total:					\$ 1,108,06		
tal initial costs					=	\$ 3,229,56	5 100.0%	
nual costs (credits)		Unit	Quantity	_	Unit cost	Amour	t Relative costs	
O&M								
Parts & labour		project	1	\$	35,000	\$ 35,00	0	
O&M		cost	1	\$		\$ 15,59		
Contingencies		%	5.0%	\$		\$ 2,53		
Contingonolea	Cub tot-1	70	5.070	Ψ				
_ .	Sub-total:					\$ 53,12	0.9%	
Fuel								
Natural gas		mmBtu	145,777	\$		\$ 1,249,31		
		MWh	66,646	\$	70.000	\$ 4,665,19	5	
Electricity						\$ 5,914,50	6 99.1%	
	Sub-total:					\$ 5,967,62		
Electricity	Sub-total:							
Electricity	Sub-total:					• •,•••,•	100.070	
Electricity	Sub-total:	Unit	Year					
Electricity tal annual costs riodic costs (credits)	Sub-total:	Unit	Year 7	S	Unit cost	Amour	nt	
Electricity tal annual costs	Sub-total:	Unit cost	Year 7	\$	Unit cost 120,000	Amour \$ 120,00	nt	
Electricity tal annual costs riodic costs (credits)	Sub-total:		Year 7	\$	Unit cost 120,000	Amour	nt	

RETScreen Greenhouse Gas (GHG) Emission Reduction Analysis - Combined cooling, heating & power project

GHG Analysis	Simplified	analysis			
Potential CDM project	Standard a	analysis			
	Custom ar	nalysis			
e case electricity system (Baseline)					
e case electricity system (Baseline)		GHG emission	T&D	GHG emission	
e case electricity system (Baseline)		GHG emission factor (excl. T&D)	T&D losses	GHG emission factor	
e case electricity system (Baseline) Country - region	Fuel type	factor			

Base case system GHG summary (Baseline)

	Fuel mix	Fuel consumption	GHG emission factor	GHG emission
Fuel type	%	MWh	tCO2/MWh	tCO2
Electricity	100.0%	83,396	0.609	50,828
Total	100.0%	83,396	0.609	50,828

Proposed case system GH	G summary (Combined cooling, heating a	k power project)			
	Fuel mix		Fuel consumption	GHG emission factor	GHG emission
Fuel type	%		MWh	tCO2/MWh	tCO2
Natural gas	39.1%		42,723	0.179	7,647
Electricity	60.9%		66,646	0.609	40,619
Total	100.0%		109,369	0.441	48,265

GHG emission reduction summary

Combined cooling, heating	Base case GHG emission tCO2	Proposed case GHG emission tCO2			Gross annual GHG emission reduction tCO2	GHG credits transaction fee %	Net annual GHG emission reduction tCO2
& power project	50,828	48,265			2,563	0%	2,563
Net annual GHG emission reduction	2,563	tCO2	is equivalent to	521	Cars & light trucks	s not used <u>Complete Financia</u>	al Summary sheet

RETScreen Financial Summary - Combined cooling, heating & power project

nnual fuel cost summary - Fort Lauder	dale-Hollywood	International Air Energy	port - Broward Coun End-use	ty, Florida				Yearly c Year	ash flows Pre-tax	After-tax	Cumulative
	Peak load	demand	energy rate	Fuel cost				#	\$	\$	
Base case system	kW	MWh	\$/MWh	\$				0	(968,869)	(968,869)	(968,8
Power Heating	10,174 0	64,891 0	70.00 0.00	4,542,368 0				1 2	(350,273) (352,922)	(350,273) (352,922)	(1,319,1 (1,672,0
Cooling	13,130	76,233	16.99	1,295,383				3	(355,624)	(355,624)	(2,027,6
Fuel cost - base case				5,837,752				4	(358,381)	(358,381)	(2,386,0
								5	(361,193)	(361,193)	(2,747,2
		Energy	End-use					6	(364,060)	(364,060)	(3,111,3
	Capacity	Energy delivered	energy rate	Fuel cost				7 8	(504,828) (369,969)	(504,828) (369,969)	(3,616,1 (3,986,1
Proposed case system	kW	MWh	\$/MWh	s				9	(373,013)	(373,013)	(4,359,1
Power	9,449	77,040	76.77	5,914,506				10	(376,117)	(376,117)	(4,735,2
Heating	2,239	19,397	0.00	0				11	(379,283)	(379,283)	(5,114,5
Cooling	13,132	76,233	0.00	0				12	(382,513)	(382,513)	(5,497,0
Fuel cost - proposed case				5,914,506				13	(385,807)	(385,807)	(5,882,8
								14 15	(547,505) (392,595)	(547,505) (392,595)	(6,430,3 (6,822,9
nancial parameters			Project costs and s	avings/income si	Immary			16	(178,290)	(178,290)	(7,001,2
eneral			Initial costs	avings/meenie st	anninary			17	(181,856)	(181,856)	(7,183,0
Fuel cost escalation rate	%	2.0%	Feasibility study		0.2%	\$	7,500	18	(185,493)	(185,493)	(7,368,5
Inflation rate	%	2.0%	Development		1.1%	\$	35,000	19	(189,203)	(189,203)	(7,557,7
Discount rate	%	10.0%	Engineering		5.4%	\$	175,000	20	(192,987)	(192,987)	(7,750,7
Project life	yr	25	Power system		23.2%	\$	750,000	21	(378,726)	(378,726)	(8,129,5
nance			Heating system Cooling system		9.4% 26.3%	\$ \$	304,000 850,000	22 23	(200,783) (204,799)	(200,783) (204,799)	(8,330,2 (8,535,0
Incentives and grants	\$		Balance of system	& misc.	26.3% 34.3%	ծ Տ	1,108,065	23	(204,799) (208,895)	(204,799) (208,895)	(8,743,9
Debt ratio	\$ %	70.0%	Total initial costs	a .moo.	100.0%	\$	3,229,565	24	(213,073)	(213,073)	(8,957,0
Debt	\$	2,260,695				•	-,,		(.,,	((
Equity	\$	968,869									
Debt interest rate	%	5.00%									
Debt term	yr	15	Annual costs and d	ebt payments							
Debt payments	\$/yr	217,801	O&M Fuel cost - propose	d 0000		\$	53,121				
			Debt payments - 15			\$ \$	5,914,506 217,801				
come tax analysis			Total annual costs			\$	6,185,427				
			rotal annual cost.	•		•	0,100,427				
			Periodic costs (cree	dits)							
			Overhaul - 7 yrs			\$	120,000				
			Annual savings and								
			Fuel cost - base ca	se		\$	5,837,752				
nnual income ustomer premium income (rebate)											
ustomer premium meome (rebate)											
			Total annual savir	ngs and income		\$	5,837,752				
			Financial viability			0(
			Pre-tax IRR - equit			%	negative	1			
			Pre-tax IRR - asset After-tax IRR - equi			% %	negative	1			
			After-tax IRR - equ			%	negative negative	1			
ectricity export income			Simple payback	513		% yr	(24.9)	1			
ections export income			Equity payback			yr yr	(24.9) > project	1			
			Net Present Value	(NPV)		\$	(4,167,648)	1			
			Annual life cycle sa		:	\$/yr	(459,142)	1			
			Benefit-Cost (B-C)			÷	(3.30)	1			
			Debt service cover			-	(1.51)				
ean Energy (CE) production income			GHG reduction cos	t	\$/	/tCO2	179				
			Ourselettus seek fla								
			Cumulative cash flo	ows graph							
			0 -								
			(1,000,000)	1 2 3 4	5 6 7	8	9 10 11 12	13 14	15 16 17 18	3 19 20 21 3	22 23 24 2
			(1,000,000)								
HG reduction income			(2,000,000)								
			9 (2,000,000)		<u> </u>						
Net GHG reduction	tCO2/yr	2,563	§ (3,000,000)								
Net GHG reduction - 25 yrs	tCO2	64,063	e (4,000,000)								
			Lo Contra da la co								
			بني (6,000,000)								
			B								
			(7,000,000) (7,000,000) (7,000,000)								
			J (8,000,000)								
			(9,000,000)								
			1								
			(10,000,000)								
			(10,000,000)								

RETScreen Sensitivity and Risk Analysis - Combined cooling, heating & power project

2% 0% -13,107,369

10.0%

-11,342,318

Minimum

\$ (7,900,542)

-9,577,267

-7,812,216

-6,047,165

\$

-4,282,114

(4,376,760)

ence = 80°

Median

erform analysis on	After_tax	RR - equity				
ensitivity range		20%	-			
nreshold	12	%				
				Initial costs		\$
uel cost - base case \$		2,583,652 -20%	2,906,608 -10%	3,229,565 0%	3,552,521 10%	3,875,478 20%
ب 4,670,201	-20%	negative	negative	negative	negative	negative
5,253,977	-10%	negative	negative	negative	negative	negative
5,837,752 6,421,527	0% 10%	negative 39.8%	negative 33.4%	negative 28.4%	negative 24.5%	negative 21.2%
7,005,302	20%	116.4%	101.2%	89.1%	79.2%	71.0%
						•
el cost - proposed case		2,583,652	2,906,608	Initial costs 3,229,565	3,552,521	\$ 3,875,478
\$		-20%	-10%	0%	10%	20%
4,731,605 5,323,055	-20% -10%	118.4% 40.8%	103.0% 34.3%	90.7% 29.2%	80.7% 25.1%	72.3% 21.8%
5,914,506	0%	negative	negative	negative	negative	negative
6,505,956	10%	negative	negative	negative	negative	negative
7,097,407	20%	negative	negative	negative	negative	negative
				Initial costs		\$
ebt interest rate		2,583,652	2,906,608	3,229,565	3,552,521	3,875,478
% 4.00%	-20%	-20% negative	-10% negative	0% negative	10% negative	20% negative
4.50%	-20%	negative	negative	negative	negative	negative
5.00%	0%	negative	negative	negative	negative	negative
5.50% 6.00%	10% 20%	negative	negative	negative	negative	negative
0.00%	20%	negative	negative	negative	negative	negative
tial costs M M el cost - proposed case	Net Prese	nt Value (NPV) Unit \$ \$ \$	Value 3,229,565 53,121 5,914,506	Range (+/-) 10% 10%	Minimum 2,906,608 47,808 5,323,055	Maximum 3,552,521 58,433 6,505,956
tial costs M lel cost - proposed case lel cost - base case abt ratio bt interest rate	Net Prese	Unit \$ \$	3,229,565 53,121	10% 10%	2,906,608 47,808	3,552,521 58,433
arameter itial costs &M Jel cost - proposed case Jeb ratio ebt ratio sbt interest rate	Net Prese	Unit \$ \$ \$ \$ % %	3,229,565 53,121 5,914,506 5,837,752 70% 5.00%	10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4.50%	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter itial costs &M Jel cost - proposed case Jeb ratio ebt ratio sbt interest rate	Net Prese	Unit \$ \$ \$ \$ % %	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15	10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4.50% 14	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter itial costs &M Jel cost - proposed case Jeb ratio ebt ratio sbt interest rate	Net Prese	Unit \$ \$ \$ \$ % %	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 pact - Net Present Vale	10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4,50% 14 Fuel cost - proposed Fuel cost - base case	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter itial costs &M Jel cost - proposed case Jeb ratio ebt ratio sbt interest rate	Net Prese	Unit \$ \$ \$ \$ % %	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15	10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4.50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter itial costs &M Jel cost - proposed case Jeb ratio ebt ratio sbt interest rate	Net Prese	Unit \$ \$ \$ \$ % %	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 pact - Net Present Vale	10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4.50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter tial costs 3M Iel cost - proposed case Iel cost - base case abt ratio abt interest rate	Net Prese	Unit \$ \$ \$ \$ % %	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 pact - Net Present Vale	10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4.50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter tial costs 3M Iel cost - proposed case Iel cost - base case abt ratio abt interest rate	Net Prese	Unit \$ \$ \$ \$ % %	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 pact - Net Present Vale	10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4.50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter tial costs 3M Iel cost - proposed case Iel cost - base case abt ratio abt interest rate	Net Prese	Unit \$ \$ \$ \$ % %	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 pact - Net Present Vale	10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4.50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter tial costs 3M Iel cost - proposed case Iel cost - base case abt ratio abt interest rate	Net Prese	Unit \$ \$ \$ \$ % %	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 pact - Net Present Vale	10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4.50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter tial costs 3M Iel cost - proposed case Iel cost - base case abt ratio abt interest rate	-0.60 -0.4	Unit \$ \$ \$ % % yr Im(3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 Dact - Net Present Vale	10% 10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4.50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
erameter tital costs SM lel cost - proposed case lel cost - base case abb interest rate abb term -1.00 -0.80	-0.60 -0.4	Unit \$ \$ \$ % % yr Im(3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 Dact - Net Present Vale	10% 10% 10% 10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4,50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M Debt term	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter itial costs &M Jel cost - proposed case Jel cost - base case ebt ratio ebt interest rate ebt term -1.00 -0.80 edian	-0.60 -0.4	Unit \$ \$ \$ % % yr Im(3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 Dact - Net Present Valu	10% 10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4,50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M Debt term	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter tital costs &M tel cost - proposed case jel cost - base case sbt ratio sbt interest rate sbt term -1.00 -0.80 edian evel of risk inimum within level of com	-0.60 -0.4 Relative in	Unit \$ \$ \$ % % yr Im(3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 Deact - Net Present Valu 0.00 0.20 eviation) of parameter % %	10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4,50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M Debt term	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter itial costs &M Jel cost - proposed case Jel cost - base case ebt ratio ebt interest rate ebt term -1.00 -0.80 edian evel of risk inimum within level of com	-0.60 -0.4 Relative in	Unit \$ \$ \$ % % yr Im(3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 Dact - Net Present Value 0.00 0.20 eviation) of parameter %	10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4,50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M Debt term	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter tital costs &M tel cost - proposed case jel cost - base case sbt ratio sbt interest rate sbt term -1.00 -0.80 edian evel of risk inimum within level of com	-0.60 -0.4 Relative in	Unit \$ \$ \$ \$ % % % % yr Imp 0 -0.20 0 -0.20 0 -0.20	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 Deact - Net Present Valu 0.00 0.20 eviation) of parameter % %	10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4,50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M Debt term	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter tital costs &M lel cost - proposed case jel cost - base case abt ratio abt interest rate abt term -1.00 -0.80 edian evel of risk inimum within level of cont aximum within level of cont	-0.60 -0.4 Relative in	Unit \$ \$ \$ \$ % % % % yr Imp 0 -0.20 0 -0.20 0 -0.20	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 Dact - Net Present Value 0.00 0.20 eviation) of parameter % % \$	10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4,50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M Debt term	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter tital costs &M tel cost - proposed case jel cost - base case sbt ratio sbt interest rate sbt term -1.00 -0.80 edian evel of risk inimum within level of com	-0.60 -0.4 Relative in	Unit \$ \$ \$ \$ % % % % yr Im	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 Dact - Net Present Value 0.00 0.20 eviation) of parameter % % \$	10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4,50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M Debt term	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
edian evel of risk inimum within level of con aximum within level of cor	-0.60 -0.4 Relative in	Unit \$ \$ \$ \$ % % % % yr Im	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 Dact - Net Present Value 0.00 0.20 eviation) of parameter % % \$	10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4,50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M Debt term	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter itial costs &M Jel cost - proposed case Jel cost - base case ebt ratio ebt interest rate ebt term -1.00 -0.80 edian evel of risk inimum within level of cont aximum within level of cont 14%	-0.60 -0.4 Relative in	Unit \$ \$ \$ \$ % % % % yr Im	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 Dact - Net Present Value 0.00 0.20 eviation) of parameter % % \$	10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4,50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M Debt term	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter tital costs &M lel cost - proposed case lel cost - base case sbt ratio ebt interest rate ebt term -1.00 -0.80 edian evel of risk inimum within level of com aximum within level of com 14% 12% 10%	-0.60 -0.4 Relative in	Unit \$ \$ \$ \$ % % % % yr Im	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 Dact - Net Present Value 0.00 0.20 eviation) of parameter % % \$	10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4,50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M Debt term	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%
arameter tital costs &M tel cost - proposed case ele cost - base case ebt ratio ebt interest rate ebt term -1.00 -0.80 edian evel of risk inimum within level of con 14% 12%	-0.60 -0.4 Relative in	Unit \$ \$ \$ \$ % % % % yr Im	3,229,565 53,121 5,914,506 5,837,752 70% 5.00% 15 Dact - Net Present Value 0.00 0.20 eviation) of parameter % % \$	10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	2,906,608 47,808 5,323,055 5,253,977 63% 4,50% 14 Fuel cost - proposed Fuel cost - base case Initial costs Debt ratio Debt interest rate O&M Debt term	3,552,521 58,433 6,505,956 6,421,527 77% 5.50%

9/25/2006; FLL 1.2 Mkw CHP Calcs w\$8.57 Gas.xls

-2,517,063

-752,012

\$

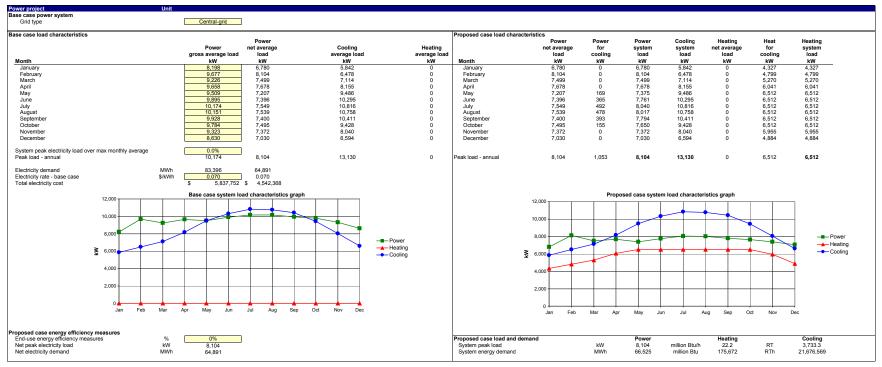
1,013,039

Maximum

(184,896)

2,778,090

10.0%


RETScreen Energy Model - Combined cooling, heating & power project

ettings						<u>See Online Ma</u>
Ettings Language - Langue Currency		English - Anglais \$			Metric units	Online manual - English
Project name	Fort L	auderdale-Hollywood International A	irport			
Project location		Broward County, Florida			Higher heating value	e (HHV)
Proposed project		Combined cooling, heating & power				
		Complete Load & Network sheet			Lower heating valu	e (LHV)
roposed case system characteristics	Unit	Estimate	%		System design	graph
ower	Onit	Lotinato	70		eyetein avoign	graph
Base load power system					Base	Peak
Туре		Gas turbine			Dase	Feak
Operating strategy		Heating load following		120% д		
Capacity	kW	4,600	56.8%	100%		
Electricity delivered to load	MWh	36,364	54.7%			
Electricity exported to grid	MWh	0		80% -		
Peak load power system		ŭ		60%		
Type		Grid electricity		40%		
Suggested capacity	kW	3.504				
Capacity	kW	3,504	43.2%	20% -		
Electricity delivered to load	MWh	30,161	45.3%	0% -		
Back-up power system (optional)		50,101	40.070	070 1	Load	Demand
Type	-					
Capacity	kW	0			(kW)	(MWh)
eating	KVV .	0				
Base load heating system						2
Type		Gas turbine		120% -	• t	Base
	million Btu/h	22.2	100.0%	100%		
Capacity	million Btu/n		100.0%	80%		
Heating delivered	million Btu	175,672	100.0%	60%		
ntermediate load heating system				40%		
Туре		Not required		20%		
Peak load heating system	_			0%		
Туре		Not required		070 1	Load	Demand
Back-up heating system (optional)			_		(kW)	(MWh)
Туре					()	()
Capacity	kW	0.0				
poling						
Base load cooling system					Base	Peak
Туре		Absorption		120% —		
Fuel source		Heating system				
Capacity	RT	2,499.7	67.0%	100% —		
Cooling delivered	RTh	19,763,053	91.2%	80% —		
Peak load cooling system				60% -		
Туре		Compressor		40%		
Fuel source		Power system				
Capacity	RT	1,248.8	33.5%	20% —		
Cooling delivered	RTh	1,913,516	8.8%	0% +		
Back-up cooling system (optional)					Load	Demand
					Luau	Demanu
Туре					(kW)	(MWh)

		ruei			Energy	
		consumption -	Fuel	Capacity	delivered	Clean Energy
Proposed case system summary	Fuel type	unit	consumption	(kW)	(MWh)	production credit?
Power						
Base load	Natural gas	mmBtu	445,822	4,600	36,364	
Peak load	Electricity	MWh	30,161	3,504	30,161	
			Total	8,104	66,525	-
Heating						
Base load	Recovered heat			6,513	51,484	
			Total	6,513	51,484	_
Cooling			-			=
Base load	Heating system			8,791	69,504	
Peak load	Power system			4,392	6,730	
			Total	13,183	76,233	-
			-			-
					Complete	e Cost Analysis sheet

Heating project	Unit							
Site conditions	Estimate	Notes/Range	Monthly inputs					
Nearest location for weather data	Fort Lauderdale Hollywood	See Weather Database	°C-d	°F-d	°C-d °F-d	°C-		
Heating design temperature	°C 10.6 51.1 °F	-40 to 15 °C	Month <18°C	<65°F Month	<18°C <65°F	Month <18°	C <65°F	
Annual heating degree-days below 18°C	°C-d 0 0 °F-d	Complete Monthly inputs	January 0	0 May	0 0	September 0	0	See Weather Database
Domestic hot water heating base demand	% 10%	0% to 25%	February 0	0 June	0 0	October 0	0	
Equivalent degree-days for DHW heating	°C-d/d 0.0	0 to 10 °C-d/d	March 0	0 July	0 0	November 0	0	
Equivalent full load hours	h 143	-	April 0	0 August	0 0	December 0	0	
Base case heating system	Single building - space heating							
Heated floor area for building	ft ² 1,280,000							
Fuel type	Electricity							
Seasonal efficiency	% 100%							
Heating load calculation								
Heating load for building	Btu/ft ² 0.0							
Total heating demand	million Btu 0							
Total peak heating load	million Btu/h 0.0							
Fuel consumption - annual	MWh 0							
Fuel rate	\$/kWh 0.000							
Fuel cost	\$ -							
Proposed case energy efficiency measures								
End-use energy efficiency measures	% 0%							
Net peak heating load	million Btu/h 0.0							
Net heating demand	million Btu 0							

-										
		Monthly inputs	•C			8 5 4			0 F 4	
										See Weather Database
	5% to 30%					961				
h 5,806			381 686			1,043				
		April	423 761	August	577	1,038	December	353	636	
Circle building another section										
Single building - space cooling	4									
ft ² 1 280 000										
70 41270										
Btu/ft ² 35.0										
¢ 1,233,300										
% 0%										
	Estimate Fort Lauderdiale Hollywood °C 32.7 90.9 °F °C-d 5.445 9.802 °F-d % 0% 0% n 5.806 Single bulking - space cooling ft ² 1.280.000 % 412% Blu/ft ² 35.0 RT 3.733.3 MWh 16.505 \$kWh 0.070 \$ 1.295.383 % 0% RT 3.733.3 RT 2.1676.569 RT 2.1676.569	Fort Lauderale Hollywood See Weather Database °C 32.7 90.9 °F 10 tod 7 °C °C.4 5.445 9.802 °F-d Complete Monthly inputs % 0% 5% 5% to 30% h 5.806 5% to 30% Single bulking - space cooling 5% to 30% ft* 1.280,000 Electricity 412% Blumt* 35.0 RT 3.733.3 MWh 18,055 \$kWVh 0.070 \$ 1,295,383 % 0% % 0%	Fort Lauderale Hollywood See Weather Database Month "C-d 32.7 90.9 °F 10 to 47 °C complete Monthly inputs "C-d 5.445 9.802 °F-d Complete Monthly inputs Single building - space cooling ft* 1.280.000 5% to 30% February February ft* 1.280.000 Electricity 412% Blumt* 35.0 RTh 21,676,569 RT 2,733.3 1.295,383 % 0% 0% % 0,700 \$ \$RT 3,733.3 3.	Fort Lauderdale Hollywood See Weather Database 10 to 47 °C *C-d *F-d "C-d 5.445 9.802 °F-d 10 to 47 °C January 313 564 % 0% 5% to 30% 5% to 30% January 313 564 h 5,806 5% to 30% S% to 30% January 313 564 March 381 686 April 423 761 Single building-space cooling ft* 1.280,000 Electricity 412% 761 Buuft* 35.0 RTh 21,676,569 7,33.3 7,33.3 7,33.3 % 0,070 \$ 1,295,383 5,373.3 5,373.3 5,373.3	Fort Lauderdiale Hollywood See Weather Database 10 to 47 °C 'C-d 'F-d Month "C-d 5.445 9.802 'F-d 20 to 47 °C 20 to 47 °C 20 to 47 °C % 0% 0% 558 to 30% 564 Mary March 331 564 Mary March h 558 to 30% 5% to 30% 381 686 July Jule March 381 686 July July Agust 423 761 August Single building -space cooling ft* 1.280.000 124 °C 763.3 364 May 8 126% 35.0 761 August 423 761 August Builting - space cooling 35.0 773.3 781 August 423 761 August Builting - space cooling 35.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Fort Lauderale Hollywood See Weather Database 10 to 47 °C Complete Monthy inputs *C-d *F-d *C-d "C-d 5.435 9.09 °F-d 10 to 47 °C Complete Monthy inputs 400°C 400°C 500°F Month 510°C 560°F Month 500°F 500°F Single building-space cooling 5% to 30% 313 564 May 508 RT 1.280.000 5 577 577 577 580°F Buuht* 35.0 761 August 577 577 Buuht* 35.0 733.3 564 577 580°F RT 1.296.383 56.0 577 577 577	Fort Lauderdiale Hollywood See Weather Dialasse 10 to 47 °C *°C-d *F-d *°C-d *F-d "C-d 5.445 9.00 °F-d 500 °F Month >10°C >50°F Month >50°C 40°C >50°F Month >50°C 90.0 °F-d 90.0 °	Fort Lauderdale Hollywood See Weather Database 10 to 4" C "C-d "F-d "C-d "F-d	Fort Lauderale Hollywood See Weather Database 10 to 47 °C Complete Monthy inputs 5% 00% °C-d 5445 °C-d 7-d 5807 °C-d 7-d Month °C-d 7-64 °C-d 7-7-d 807 °C-d 7-7-d 807 °C-d 7-7-d 807 °C-d 7-7-d 807 °C-d 7-7-d 807 °C-d 7-7-d 807 °C-d 7-7-d 807 °C-d 7-7-d 807 °C-d 7-7-d 807 °C-d 807 °C-d 7-7-d 807 °C-d 807 °C-d 7-7-d 807 °C-d 807 °C	Fort Lauderale Hollywood See Weather Database 10 to 47 °C Complete Monthy inputs 5% 00% °C-d 5445 °C-d 5445 °C-d 7-6 °C-d 7-7 °

Complete Equipment Selection sheet

Complete Equipment Selection sheet

RETScreen Equipment Selection - Combined cooling, heating & power project

RETScreen Equipment Selection - Combined	cooling, neuting a pe							Show alternative u	nits
Proposed case cooling system						Propos	ed case system	load character	istics graph
Base load cooling systen					kW	12,000			
Туре		Absorption							
Fuel source		Heating system		-		10,000			
Capacity	RT	2,499.7	67.0%	See product database		10,000			
Seasonal efficiency	%	135%							
Manufacturer		Mitsubishi Electric				8,000			
Model		MDUE-2500H		1 unit(s)		¥ (
Cooling delivered	RTh	19,763,053	91.2%			6,000 🛹		- T - T - '	
Peak load cooling systen									
Туре		Compressor		1		4,000 🗲	T		
Fuel source		Power system							
Suggested capacity	RT	1,233.7				2,000 -			
Capacity	RT	1,248.8	33.5%	See product database		2,000			
Seasonal efficiency	%	412%	00.070	000 product databacc	•				
Manufacturer	70	Trane		1		0 +	+ + + +		
Model		CVHE-1250		1 unit(s)		Jan	Feb Mar Apr Ma	/ Jun Jul Aug S	ep Oct Nov De
Cooling delivered	RTh	1,913,516	8.8%	i unit(5)			ower 📥	-Heating	Cooling
Cooling derivered	1X111	1,813,510	0.070						5
roposed case power system									
System selection		Base load system							
ase load power system									
Туре		Gas turbine							
Availability	%		100.0%	8,760 h					
Fuel selection method		Single fuel		1					
Fuel type		Natural gas - mmBtu							
Fuel rate	\$/mmBtu	8.570							
Fuerrate	\$/IIIIIBIU	0.570							
Gas turbine									
Power capacity	kW	4,600	56.8%	See product database	<u>.</u>				
Minimum capacity	%	40%							
Electricity delivered to load	MWh	36,364	54.7%						
Electricity exported to grid	MWh	0							
Manufacturer		Solar Turbines		1					
Model		Centaur 50		1 unit(s)					
Heat rate	Btu/kWh	12,260		(-)					
Heat recovery efficiency	%	55%							
Fuel required	million Btu/h	56.4							
Heating capacity	million Btu/h	22.2	100.0%						
Treating capacity	minori Blari	22.2	100.076						
perating strategy - base load power syster									
Fuel rate - base case heating system	\$/MWh	0.00							
Electricity rate - base case	\$/MWh	70.00							
Fuel rate - proposed case power system	\$/MWh	29.24							
Electricity export rate	\$/MWh	70.00							
Electricity rate - proposed case	\$/MWh	70.00							
				Remaining		Remaining	_		
		Electricity delivered	Electricity	electricity	Heat	heat	Power	Operating	
		to load	exported to grid	required	recovered	required	system fuel	profit (loss)	
Operating strategy		MWh	MWh	MWh	million Btu	million Btu	million Btu	\$	%
Full power capacity outpu		40,296	0	26,229	175,672	0	494,029	-1,413,108	63.4%
Power load following		40,296	0	26,229	175,672	0	494,029	-1,413,108	63.4%
Heating load following		36,364	0	30,161	175,672	0	445,822	-1,275,217	67.2%
Select operating strategy		Heating load following		1					

Return to Energy Model sheet

RETScreen Cost Analysis - Combined cooling, heating & power project

ettings - Fort Lauderdale-Hollywood Inte	ernational Air	oort - Browar	d County, Florid	la				
Pre-feasibility analysis		Cost referen	ce					
Feasibility analysis		Second curre		C	ost reference	None		
			sticy					
tial costs (credits)		Unit	Quantity		Unit cost	Amount	Relative costs	
Feasibility study								
Feasibility study		cost	1	\$	13,000 \$	13,000		
	Sub-total:				\$	13,000	0.1%	
Development								
Development		cost	1	\$	65,000 \$	65,000		
	Sub-total:				\$	65,000	0.7%	
Engineering								
Engineering		cost	1	\$	425,000 \$	425,000		
	Sub-total:				\$	425,000	4.7%	
Power system								
Base load - Gas turbine		kW	4,600	\$	500 \$	2,300,000		
Peak load - Grid electricity		kW	3,504		\$	-		
Road construction	Γ	km			\$	-		
Transmission line	ľ	km			\$	-		
Substation	-	project			\$	-		
Energy efficiency measures		project			\$	-		
Custom		credit			\$	-		
					\$	-		
	Sub-total:				\$	2,300,000	25.3%	
Heating system					·	,,		
Base load - Gas turbine	Г	kW	6,512.7		\$	-		
Energy efficiency measures	L	project	-,		ŝ	-		
HRSG		cost	1	\$	475,000 \$	475,000		
				Ť	\$			
	Sub-total:				\$	475,000	5.2%	
Cooling system						.,		
Base load - Absorption	ſ	RT	2,499.7	\$	1,150 \$	2,874,630		
Peak load - Compressor		RT	1,248.8		\$	-		
Energy efficiency measures	<u>-</u>	project			\$	-		
		cost	1		\$	-		
					\$	-		
	Sub-total:				\$	2,874,630	31.6%	
Balance of system & miscellaneous								
Balance of system & miscellaneous		cost	1	\$	1,956,900 \$	1,956,900		
Contingencies		%	10.0%		8,109,530 \$	810,953		
Interest during construction	Γ	8.00%	6 month(s)	\$\$	8,920,483 \$	178,410		
· · · · · ·	Sub-total:				\$	2,946,263	32.4%	
tal initial costs					\$	9,098,892	100.0%	
nual costs (credits)		Unit	Quantity		Unit cost	Amount	Relative costs	
O&M								
Parts & labour		project	1	\$	35,000 \$	35,000		
O&M		cost	1	\$	54,546 \$	54,546		
Contingencies		%	5.0%	\$	89,546 \$	4,477		
<u>v</u>	Sub-total:			- 1 - 1	\$	94,023	1.6%	
Fuel	000 10101.				Ŷ	0.,010		
Natural gas		mmBtu	445,822	\$	8.570 \$	3,820,692		
Electricity		MWh	30,161	\$	70.000 \$	2,111,245		
LIGHTORY	Sub total:	111 4 111	50,101	Ψ		5,931,937	09.49/	
tel ennuel e este	Sub-total:				\$		98.4%	
tal annual costs					\$	6,025,960	100.0%	
		Unit	Neer		Unit east	A		
riodic costs (credits)			Year	¢	Unit cost	Amount 460,000		
Overhaul		cost	7	\$	460,000 \$	400,000		
				-	\$	-		
End of project life					\$	-		
					\$			Go to GHG Analysis s

RETScreen Greenhouse Gas (GHG) Emission Reduction Analysis - Combined cooling, heating & power project

GHG Analysis Potential CDM project	Simplified Standard a Custom are	analysis		
e case electricity system (Baseline)				

Base case system GHG summary (Baseline)

	Fuel mix	Fuel consumption	GHG emission factor	GHG emission
Fuel type	%	MWh	tCO2/MWh	tCO2
Electricity	100.0%	83,396	0.609	50,828
Total	100.0%	83,396	0.609	50,828

Proposed case system GF	IG summary (Combined cooli	ng, heating & power project)			
	Fuel mix		Fuel consumption	GHG emission factor	GHG emission
Fuel type	%		MWh	tCO2/MWh	tCO2
Natural gas	81.2%		130,657	0.179	23,385
Electricity	18.8%		30,161	0.609	18,382
Total	100.0%		160,818	0.260	41,767

GHG emission reduction summary

Combined cooling, heating	Base case GHG emission tCO2	Proposed case GHG emission tCO2			Gross annual GHG emission reduction tCO2	GHG credits transaction fee %	Net annual GHG emission reduction tCO2
& power project	50,828	41,767			9,061	0%	9,061
Net annual GHG emission reduction	9,061	tCO2	is equivalent to	1,842	Cars & light trucks	not used Complete Financia	al Summary sheet

RETScreen Financial Summary - Combined cooling, heating & power project

Annual fuel cost summary - Fort Lauder	dale-Hollywood	International Air Energy	port - Broward Coun End-use	ty, Florida			Yearly c Year	ash flows Pre-tax	After-tax	Cumulative
	Peak load	demand	energy rate	Fuel cost			#	\$	Anter-tax \$	Cumulative
Base case system	kW	MWh	\$/MWh	\$			0	(2,729,668)	(2,729,668)	(2,729,60
Power Heating	10,174 0	64,891 0	70.00 0.00	4,542,368 0			1 2	(805,598) (809,438)	(805,598) (809,438)	(3,535,2) (4,344,7)
Cooling	13,130	76,233	16.99	1,295,383			3	(813,354)	(813,354)	(5,158,0
Fuel cost - base case	10,100	10,200	10.00	5,837,752			4	(817,348)	(817,348)	(5,975,4)
							5	(821,423)	(821,423)	(6,796,8
		_					6	(825,579)	(825,579)	(7,622,4
	0	Energy	End-use	F			7	(1,358,213)	(1,358,213)	(8,980,6
Dranaged ages system	Capacity	delivered	energy rate	Fuel cost			8 9	(834,142) (838,552)	(834,142) (838,552)	(9,814,7) (10,653,3
Proposed case system Power	kW 8,104	MWh 66,525	\$/MWh 89.17	\$ 5,931,937			10	(843,051)	(843,051)	(11,496,3
Heating	6,513	51,484	0.00	0			11	(847,639)	(847,639)	(12,344,0
Cooling	13,183	76,233	0.00	Ő			12	(852,319)	(852,319)	(13,196,3
Fuel cost - proposed case				5,931,937			13	(857,093)	(857,093)	(14,053,4
							14	(1,468,923)	(1,468,923)	(15,522,3
inancial parameters			Project costs and s	avinge/incomo e	imman/		15 16	(866,929) (258,370)	(866,929) (258,370)	(16,389,2 (16,647,6
ieneral			Initial costs	savings/income si	unnary		17	(263,537)	(263,537)	(16,911,1
Fuel cost escalation rate	%	2.0%	Feasibility study		0.1% \$	13,000	18	(268,808)	(268,808)	(17,179,9
Inflation rate	%	2.0%	Development		0.7% \$	65,000	19	(274,184)	(274,184)	(17,454,1
Discount rate	%	10.0%	Engineering		4.7% \$	425,000	20	(279,668)	(279,668)	(17,733,8
Project life	yr	25	Power system		25.3% \$	2,300,000	21	(982,467)	(982,467)	(18,716,3
			Heating system		5.2% \$	475,000	22	(290,966)	(290,966)	(19,007,2
inance	e		Cooling system	& misc	31.6% \$ 32.4% \$	2,874,630 2,946,263	23 24	(296,786)	(296,786)	(19,304,0
Incentives and grants Debt ratio	\$ %	70.0%	Balance of system Total initial costs		32.4% \$ 100.0% \$	2,946,263 9,098,892	24 25	(302,721) (308,776)	(302,721) (308,776)	(19,606,7 (19,915,5
Debt	\$	6,369,225	rotar mitiai costs		100.070 \$	9,090,092	23	(300,770)	(300,770)	(13,313,5
Equity	\$	2,729,668								
Debt interest rate	%	5.00%								
Debt term	yr	15	Annual costs and c	lebt payments						
Debt payments	\$/yr	613,626	O&M		\$	94,023				
			Fuel cost - propose		\$					
ncome tax analysis			Debt payments - 1 Total annual cost		\$	613,626 6,639,586				
icome tax analysis	,		Total annual Cost	5	Ş	0,039,500				
			Periodic costs (cre	dits)						
			Overhaul - 7 yrs)	\$	460,000				
			Annual savings an							
			Fuel cost - base ca	ise	\$	5,837,752				
Innual income										
Customer premium income (rebate)										
,										
			Total annual savi	ngs and income	\$	5,837,752				
			Einopoial viability				1			
			Financial viability Pre-tax IRR - equit	N	%	negative	11			
			Pre-tax IRR - asse		%		11			
			After-tax IRR - equ		%					
			After-tax IRR - ass		%					
lectricity export income			Simple payback		yr	(48.3)				
			Equity payback		yı	> project	11			
			Net Present Value	(NPV)	\$		11			
			Annual life cycle sa		\$/y		11			
			Benefit-Cost (B-C) Debt service cover		-	(2.65) (1.39)				
lean Energy (CE) production income			GHG reduction cos		- \$/tC					
			01101100000111000		φ/to-		J			
			Cumulative cash fle	ows graph						
			0 -							
			0	1 2 3 4	5 6 7	8 9 10 11 1	2 13 14	15 16 17 1	8 19 20 21 2	, , , ,, ,, ,, ,, ,
				1234	5 0 7	0 9 10 11 1	2 13 14	13 10 17 1	0 13 20 21 2	2 23 24 2
UC reduction income		_	(5,000,000)							
HG reduction income	1		(5,000,000)		~					
Net GHG reduction	tCO2/yr	9,061								
Net GHG reduction - 25 yrs	tCO2	226,514	cash flows (10000000) —			<u>_</u>				
			5 (10,000,000)							
							_			
			9 (15 000 000)							
			(15,000,000)							
			Cruminative Crumin							
			J (20,000,000)							
			(20,000,000)							
			(25.000.000)							
			(25,000,000)							

RETScreen Sensitivity and Risk Analysis - Combined cooling, heating & power project

Perform analysis on	After-ta	ax IRR - equity				
Sensitivity range	7 4101 4	20%				
Threshold	12	%	4			
		-				
				Initial costs		\$
Fuel cost - base case		7,279,114	8,189,003	9,098,892	10,008,782	10,918,671
\$		-20%	-10%	0%	10%	20%
4,670,201	-20%	negative	negative	negative	negative	negative
5,253,977	-10%	negative	negative	negative	negative	negative
5,837,752	0%	negative	negative	negative	negative	negative
6,421,527	10%	2.0%	0.4%	-0.9%	-2.1%	-3.1%
7,005,302	20%	25.9%	21.4%	17.9%	15.1%	12.9%
						-
		-		Initial costs		\$
Fuel cost - proposed ca	se	7,279,114	8,189,003	9,098,892	10,008,782	10,918,671
\$		-20%	-10%	0%	10%	20%
4,745,549	-20%	26.8%	22.1%	18.5%	15.7%	13.4%
5,338,743	-10%	2.4%	0.8%	-0.6%	-1.7%	-2.8%
5,931,937	0%	negative	negative	negative	negative	negative
6,525,130	10%	negative	negative	negative	negative	negative
7,118,324	20%	negative	negative	negative	negative	negative
			0.400.000	Initial costs	10.000 700	\$
Debt interest rate		7,279,114	8,189,003	9,098,892	10,008,782	10,918,671
%	2221	-20%	-10%	0%	10%	20%
4.00%	-20%	negative	negative	negative	negative	negative
4.50%	-10%	negative	negative	negative	negative	negative
5.00%	0%	negative	negative	negative	negative	negative
5.50% 6.00%	10% 20%	negative	negative	negative negative	negative negative	negative negative
		negative	negative			

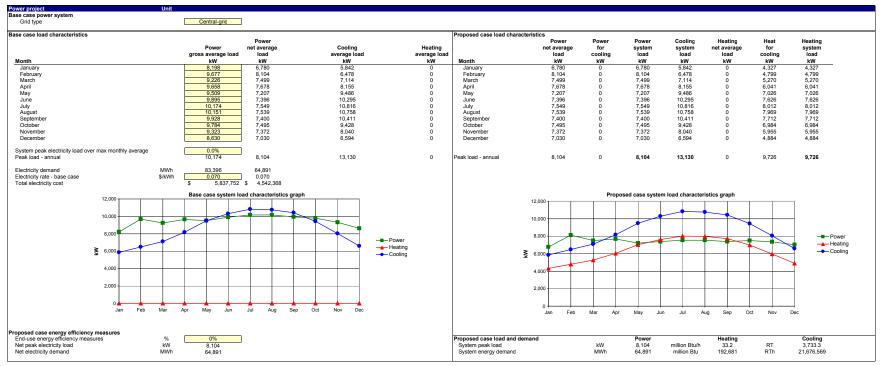
RETScreen Energy Model - Combined cooling, heating & power project

Cooling Base load

ettings							
Language - Langue		English - Anglais				Online r	nanual - English
Currency		\$			Metric units		
		•					
Project name	Fort I	_auderdale-Hollywood International A	Airport		Imperial units		
Project location		Broward County, Florida		_			
Proposed project		Combined cooling, heating & power			Higher heating	value (HHV)	
r toposed project		* * *			Lower heating	value (LHV)	
		Complete Load & Network sheet					
oposed case system characteristics	Unit	Estimate	%		System des	ign graph	
ower							
Base load power system		One total			Base		Peak
Туре		Gas turbine		1000/			
Operating strategy		Heating load following		120%			
Capacity	kW	7,520	92.8%	100%			
Electricity delivered to load	MWh	47,834	73.7%	80%			
Electricity exported to grid	MWh	76					
Peak load power system				60%			
Туре		Grid electricity		40%			
Suggested capacity	kW	584					
Capacity	kW	584	7.2%	20%			
Electricity delivered to load	MWh	17,057	26.3%	0%			
Back-up power system (optional)	1010011	17,037	20.370	070 1	Land		Jomand
					Load		Demand
Туре	L				(kW)		(MWh)
Capacity	kW	0					
eating							
Base load heating system					Base		Peak
Туре		Gas turbine		120%			
Capacity	million Btu/h	30.2	90.9%				
Heating delivered	million Btu	192,250	99.8%	100%			
ntermediate load heating system		.02,200	00.070	100%			
Type		Not required					
		nocrequieu		80%			
Peak load heating system	_	Deiler					
Туре		Boiler		60%			
Fuel type	a:	Natural gas - mmBtu					
Fuel rate	\$/mmBtu	8.570		40%			
Suggested capacity	million Btu/h	3.0		40 /0			
Capacity	million Btu/h	3.2	9.6%				
Heating delivered	million Btu	430	0.2%	20%			
Manufacturer	· · · ·		See PDB				
Model				0%			
Seasonal efficiency	%	82%			Load		Demand
	/0	0270					
Back-up heating system (optional)					(kW)		(MWh)
Туре							
Capacity	kW	0.0					
ooling					_	Deee	
Base load cooling system		Ab				Base	
Туре		Absorption		150%			
Fuel source		Heating system		150%			
Capacity	RT	3,733.4	100.0%	50%			
Cooling delivered	RTh	21,676,569	100.0%	0%			
Back-up cooling system (optional)					Load		Demand
Туре					(kW)		
Capacity	kW	0			(KVV)		(MWh)
			· · · · · · · · · · · · · · · · · · ·				
			Fuel	F	0	Energy	
			consumption -	Fuel	Capacity	delivered	Clean Ener
oposed case system summary		Fuel type	unit	consumption	(kW)	(MWh)	production cr
Power							
Base load		Natural gas	mmBtu	483,894	7,520	47,834	
Peak load		Electricity	MWh	17,057	584	17,057	
Electricity exported to grid				,		76	
Licothony exported to grid				Total	8,104	64,967	
				rotal	0,104	04,907	-
Heating		D				F0 0.45	_
Base load		Recovered heat			8,844	56,343	
		Recovered heat Natural gas	mmBtu	525 Tota	8,844 938 9,781	56,343 126 56,469	

Heating system

Complete Cost Analysis sheet


76,233 **76,233**

13,130 **13,130**

Total

Heating project	Unit											
Site conditions	Estimate	Notes/Range	Monthly inputs	s								
Nearest location for weather data	Fort Lauderdale Hollywood	See Weather Database		°C-d	°F-d		°C-d	°F-d		°C-d	°F-d	
Heating design temperature	°C 10.6 51.1		Month	<18°C	<65°F	Month	<18°C	<65°F	Month	<18°C	<65°F	
Annual heating degree-days below 18°C	°C-d 0 °F		January	0	0	May	0	0	September	0	0	See Weather Database
Domestic hot water heating base demand	% 10%	0% to 25%	February	0	0	June	0	0	October	0	0	
Equivalent degree-days for DHW heating	°C-d/d 0.0	0 to 10 °C-d/d	March	0	0	July	0	0	November	0	0	
Equivalent full load hours	h 143	-	April	0	0	August	0	0	December	0	0	
Base case heating system	Single building - space heating											
	·											
Heated floor area for building	ft ² 1,280,000											
Fuel type	Electricity											
Seasonal efficiency	% 100%											
Heating load calculation												
Heating load for building	Btu/ft ² 0.0											
Total heating demand	million Btu 0											
Total peak heating load	million Btu/h 0.0											
Fuel consumption - annual	MWh 0											
Fuel rate	\$/kWh 0.000											
Fuel cost	\$ -											
Proposed case energy efficiency measures												
End-use energy efficiency measures	% 0%											
Net peak heating load	million Btu/h 0.0											
Net heating demand	million Btu 0											

Cooling project	Unit												
Site conditions	Estimate		Notes/Range	Monthly inpu	ts								
Nearest location for weather data	Fort Lauderdale H		See Weather Database		°C-d	°F-d		°C-d	°F-d		°C-d	°F-d	
Cooling design temperature	°C 32.7	90.9 °F	10 to 47 °C	Month	>10°C	>50°F	Month	>10°C	>50°F	Month	>10°C	>50°F	
Annual cooling degree-days above 10°C	°C-d 5,445	9,802 °F-d	Complete Monthly inputs	January	313	564	May	508	915	September	540	972	See Weather Database
Non-weather dependant cooling	% 0%		5% to 30%	February	314	564	June	534	961	October	505	910	
Equivalent full load hours	h 5,806			March	381	686	July	580	1,043	November	417	751	
				April	423	761	August	577	1,038	December	353	636	
				-									
Base case cooling system	Single building - space	cooling											
Cooled floor area for building	ft ² 1,280,000												
Fuel type	Electricity												
Seasonal efficiency	% 412%												
Cooling load calculation													
Cooling load for building	Btu/ft ² 35.0												
Total cooling demand	RTh 21,676,569	1											
Total peak cooling load	RT 3,733.3												
Fuel consumption - annual	MWh 18,505												
Fuel rate	\$/kWh 0.070												
Fuel cost	\$ 1,295	5,383											
Proposed case energy efficiency measures													
End-use energy efficiency measures	% 0%												
Net peak cooling load	RT 3,733.3												
Net cooling demand	RTh 21,676,569												

Complete Equipment Selection sheet

Complete Equipment Selection sheet

RETScreen Equipment Selection - Combined cooling, heating & power project

Type The response of case power system System selection Base load system Base load system Gas turbine Availability % Fuel selection method Single fuel Fuel selection method Single fuel Fuel selection method Single fuel Power capacity NW Minimum capacity % Electricity delivered to load MWN Electricity delivered to load MWN Heating capacity % Model Trauras 70 Heating capacity % Model Bluk/Wh Heating capacity SMWN System required SMWN 70.00 % Gost traite SMWN Operating strategy - base load power system SMWN 70.00 Fleit rate - base case bealing system Electricity delivered SMWN 70.00 Fleit rate - base case bealing system SMWN 70.00 Full power regreating strategy Operating strategy Model Heating capacity Heating capacity SMWN 70.00 Full power capacit case SMWN <	creen Equipment Selection - Combined co	ning, nearing & po	ower project					□ Sł	now alternative unit	s
Base load cooling system Absorption W Image: Capacity System Capacity Heating system 100.0% See anocluci diatabase Model MUDUE 5200H 1 unit(s) Image: Capacity System Pask load cooling system RTh 21.676.589 100.0% State Load power system RTh 21.676.589 100.0% Cooling delivered RTh 21.676.589 100.0% State Load power system Base Load system Base Load system State Load power system Base Load system Base Load system State Load power system Strangle fuld Base Load system State Load power system Strangle fuld Base Load system State Load power system Strangle fuld Base Load system State Load power system Strangle fuld Base Load system State Load power system Strangle fuld Base Load power system Fuel istat Strangle fuld Base Load power system Fuel istate Strangle fuld Base Load power system Fuel istate Strangle fuld Base Load power system Fuel istate Strangle fuld Bas	sed case cooling system				-		Propos	ed case system	load characteris	tics graph
Type Absorption Puel source Capacity Seasonal efficiency Manufacturer Model RT 37,334 100.0% See product distbase Manufacturer Model efficiency Peak load cooling system RT 21,076,800 100.0% 1 unit(s) Type RT 21,076,800 100.0% 1 unit(s) Peak load cooling system RT 21,076,800 100.0% Type RT 21,076,800 100.0% System selection ase load over system Base load system Type Ges turbine 100.0% 3,760 n Fuel selection methoc Fuel selection capacity Fuel selection capacity Fuel selection capacity W <u>7,620 92.9%, 47,834 Szee product distbase Prust selection selection selection selection capacity Fuel selection respect NWN <u>7,750</u> 1 unit(s) Prust selection selection selection selection selection capacity Fuel selection respect to grid NWN <u>70,757</u> 1 unit(s) Prust selection selection selection selection selection capacity Fuel rate Stem and prust selection select</u>						kW				
Fuel solution Heating system 100.0% See product database Object Not required 1 unit(s) 1 unit(s) Waturdschurer Not required 1 unit(s) Operating system See product database System selection RTh System selection Base load system Type Not required Type See product database System selection Base load system System selection Base load system Type See product database Type See product database Winnum capacity % See product database See product database Minnum capacity % Best trabin See product database Minnum capacity % Best trabin See product database Minnum capacity % Minnum capacity			Absorption		1		12,000			
Capetyl RT 3,733 4 (150 cm) 100.0% See product database Sassnal efficiency Model Cooling delivered Pack load cooling system Mitty 21,675,589 100.0% See product database Type Not required 1 unit(s) 000000000000000000000000000000000000					1		.,			
Seisonia efficiency Manufacturer Model Cooling delivered Deak load cooling system Type Not required MDUE 2500H MDUE 2500H MDUE 2500H MDUE 2500H MDUE 2500H Not required MDUE 2500H Not required System selector System selector		DT		100.0%	See product database					
Manufacturer Model Cooling delivered Peak load cooling system Imit(s) 2000 Lan Feb Mar Apr May, An Jul Aug See (Peak load cooling system Type Not required Imit(s) 2000 Lan Feb Mar Apr May, An Jul Aug See (Peak load cooling system System selection Type Not required Power Heating System selection Type Base load system System selection Type Single fuel Nature approximation Base load system System selection Type Single fuel Nature approximation Base load system System selection Type Single fuel Nature approximation Base load system System selection Fuel selection work selection Single fuel NWN TSST Ges turbine Power capacity MWN MWN TSST Ges turbine Power selection WWN W/Y TSST Ges turbine Power selection WWN Sole Turbines MWN 1 unit(s) Heat rate Heat rate work apported to grid MWN Sole Turbines MWN Field part rate Heat rate proposed case SinWN To DO SinWN To DO				100.0 %	See product database	2				
Model Cooling delivered Peak load cooling systen Type I unit(s) I unit(s) Pack load cooling systen Type IIII 21676.569 100.0% IIIII(s) Power IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		70			-		4,000			
Cooling delivered Pask load cooling system RTh 21,676,569 100.0% Aun Feb Mar Agr May Jun Jul Aug Sep 0 Type Not required Power System System selection Base load system System selection Base load system Type Gas turbine Type Gas turbine Fuel selection methoc Natural gas - mmElu Fuel selection methoc Natural gas - mmElu Fuel selection methoc Natural gas - mmElu Fuel rate SymmBu 8.760 Gas turbine Power capacity Minimum capacity WY 7.520 Minimum capacity WY 7.676 Model ButkWNh 10.100 Heat rate ButkWNh 10.100 Heat rate ButkWNh 10.100 Heat rate - base case boding system S/MV/h 20.09 Fuel rate - case case heating system S/MV/h 20.00 Electricity delivered to ade S/MV/h 70.00 Fuel rate - base case body power system S/MV/h 20.22 Fuel rate - proposed case S/MV/h 20.22 Fuel rate - proposed case S/MV/h 70.00 Power (add) run run reson S/MV/h 20.02 Fuel run run run ru							2,000			
Paak load cooling system Jun reguined Jun reguined Type Not required Power System selection Base load system Sase load power system Gas turbine Type Gas turbine Puel selection method Single fuel Fuel selection method Single fuel Power capacity WW Minimur capacity S/mmBlu Best traite S/mmBlu Power capacity WW Minimur capacity WW Heating capacity WW Heating strategy million Btuh Power capacity S/MWh Heating capacity S/MWh Fuel rate S/MWh Power capacity S/MWh Traiting strategy S/MWh Power capacity S/MWh To load S/MWh Power capacity S/MWh Power capacity S/MWh To load S/MWh Power capacity S/MWh Power capacity S/MWh To load S/MWh Power capacity S/MWh S/MWh 70.00 S/MWh 70.00 S/MWh 70.00 S/MWh 70.00 <tr< td=""><td></td><td></td><td></td><td></td><td>1 unit(s)</td><td></td><td>o 🗕</td><td></td><td></td><td></td></tr<>					1 unit(s)		o 🗕			
Part load cooling system Type Not required Power Heating System Selection Base load system System Selection Base load system Type Gas turbine Type Gas turbine Power apacity Simple fuel Fuel spectration Simple fuel Fuel spectration Simple fuel Power apacity SimmBtu Betertick velocities SimmBtu Electrick velocities SimmBtu But Whith 7.520 Power apacity WW Minimum capacity SimmBtu Betertick velocities NWN Mountification Base load system Type Solar Turbines Mountification NWN Velocities Base to 30% Fuel rate - base case heading system ShWNh Electrick velocities ShWNh Tate - base case heading system ShWWh Electrick velocities ShWNh Toposed case ShWNh 70.00 Fuel rate - proposed case ShWNh 70.00 Fuel rate - proposed case ShWNh 70.00 Fuel rate - proposed case ShWNh 73.31 <		RTh	21,676,569	100.0%			.lan	Feb Mar Apr May	Jun Jul Aug Sep	Oct Nov Dec
Type Tot Register robusted cases power system Base load system base load power system Gas turbine Fuel selection method Single fuel Power capacity KW Minimum capacity KW Electricity delivered to load ButwWh Electricity delivered to load ButwWh Electricity delivered to load ButwWh Fuel rate ButwWh Model MWh Heating capacity % Model Single fuel Fuel rate ButwWh To a cose case load power system Single fuel Fuel rate - base case load power system SinWh Fuel rate - proposed case SMWh SMWh 2000 SMWh 2000 Fuel rate - proposed case SMWh SMWh 2000 Power load following 64.358 Power load following 64.358 Power load following 64.358 Power load following 64.358 Heating load following 64.358 Heating load following 64.358 <	ik load cooling systen				_					
System selection selection selection selection gradient system Type Gas turbine Gas turbine Gas turbine Gas turbine Simple fuel Natural gas - mmBtu S.760 h Fuel type SimmBtu S.570 Fuel selection method SimmBtu S.570 Fuel type Casaturbine Gas turbine Gas Gas turbine Gas Gas turbine Gas turbine Gas Gas Gas turbine Gas	уре		Not required				- - Pi	ower 📥	Heating -	Cooling
System selection System Type Availability Ges turbine Availability Ges turbine Fuel spection methox Fuel type Fuel rate SimmBlu 8.760 h See product database Fuel type Fuel rate SimmBlu 8.760 h See product database Fuel type Fuel rate SimmBlu 8.760 h See product database Fuel type Fuel rate SimmBlu 8.760 h See product database Fuel type Fuel rate Fuel	sod caso powor system									
Type Availability Gas turbine Single fuel Net selection method Single fuel NumBlu 8,760 h Fuel rate Single fuel Num Kit with association of the state of the s			Base load system							
Gas turbine Availability 8.760 h Fuel selection method Fuel type Single fuel Natural gas : mmBtu 8.760 h Gas turbine Power capacity W 7.520 92.8% See product database Minimum capacity % 40% 7.520 92.8% See product database Minimum capacity % 40% 7.520 92.8% See product database Minimum capacity % 40% 7.520 92.8% See product database Minimum capacity % 40% 7.520 92.8% See product database Model MWh 47.834 7.3% 1 unit(s) Heat race way efficiency Heat rate Blu/live 30.2 90.9% Portation Strategy - base load power system Fuel rate - proposed case power system S/MWh 0.00 Electricity rate - proposed case power system Power Operating strategy Heat rate S/MWh 70.00 Single fuel Power Operating profit (loss) Power <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>					1					
Availability % 100.0% 8,760 h Fuel selection methox Single fuel Natrail gas - nmBtu Fuel type S/mmBtu 8.570 Gas turbine Power capacity KW 7.500 Minimum capacity % 40% 92.8% See product database Minimum capacity % 40% 92.8% See product database Minimum capacity % 7.37% Telestricty delivered to load MWh Electricity protect lo grid MWh 73.7% 1 unit(s) 1 Heat rate Btu/kWh 10.100 1 1 1 Heat rate Btu/kWh 76.0 1 1 1 Heating capacity million Btu/h 76.0 1 1 1 Fuel prequired SMWh 0.00 22.4 1 <td></td> <td></td> <td>Gas turbine</td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td>			Gas turbine		7					
Fuel selection method Fuel type Fuel rate Single fuel Natural gas - mmBtu See product database Gas turbine Power capacity Minimum capacity Minimum capacity Manufacturer Model KW 7,520 92.8% See product database Heat recovery efficiency Fuel required % 40% 1 unit(s) Heat recovery efficiency Fuel required % 60% Fuel required MWh 76.0 Heat recovery efficiency Fuel required % 0.00 Fuel rate - base case heating system Electricity rate - base case Fuel required \$MWh 0.00 Fuel rate - base case heating system Electricity rate - base case Fuel required \$MWh 70.00 Fuel rate - base case heating system Electricity rate - proposed case \$MWh 70.00 Fuel rate - proposed case \$MWh 70.00 Fuel rate - proposed case \$MWh 70.00 Fuel required \$MWh 70.00 Fuel reading system Electricity delivered \$Sim Whh \$Sim Whh Operating strategy MWh MWh MWh MWh Add 1.518 \$Sid 191.944 Power load following 64,358 0 333 191.944		%	Cuo turbine	100.0%	8 760 h					
Fuel type Natural gas - mmBtu Fuel rate S/mmBtu 8.570 Gas turbine Power capacity KW 7.520 92.8% See product database Minimum capacity % 40% 7.520 92.8% See product database Minimum capacity % 40% 7.520 92.8% See product database Manufacturer WWh 76 73.7% 1 unit(s) Heat rate Blu/kWh 10,100 1 1 Heat rate Blu/kWh 76.0 90.9% Preering strategy - base load power syster S/MWh 0.00 Electricity database S/MWh 20.09 Electricity rate - base case heating systen S/MWh 0.00 Electricity are - proposed case Remaining electricity are - proposed case Power s/MWh Operating strategy - base load power systen S/MWh 70.00 Electricity rate - proposed case S/MWh 70.00 Electricity are - proposed case S/MWh 70.00 Pure required ing system fuel S/MWh 0.1618 S33 191.944 736 650.012 -1.090.696 -1.090.696 -1.090.696	valiability	/0		100.078	8,700 11					
Fuel rate \$/mmBtu 8.570 Gas turbine Power capacity KW 7.520 92.8% Size product database Minimu capacity KW 7.520 92.8% Size product database Minimu capacity % 40% 73.7% Electricity delivered to load MWh 47.834 73.7% Electricity exported to grid MWh 76 Model Taurus 70 1 unit(s) Heat rate Btu/kWh 10,100 1 Heat rate Btu/kWh 30.2 90.9% Power dapacity million Btu/h 30.2 90.9% Pour rate - broposed case S/MWh 0.00 Electricity rate - broposed case S/MWh 70.00 Fuel rate - proposed case S/MWh 70.00 Electricity rate - proposed case S/MWh 70.00 Fuel rate - proposed case S/MWh 70.00 Electricity rate - proposed case S/MWh 70.00 Fuel rate - proposed case S/MWh 70.00 Sill required Remaining required Remaining required Remaining required System fuel profit(loss) Power system fuel prof	el selection methoc		Single fuel]					
Gas turbine View Power capacity KW Minimum capacity % 40% 92.8% See product database Minimum capacity % Model MWh Manufacturer Solar Turbines Model Taurus 70 Heat rate BturkWh Heat rate BturkWh Heat rate BturkWh Heat rate BturkWh Heating capacity % Million Bturh 76.0 Fuel rate base case heating system \$MWh Fuel rate broposed case power syster \$MWh Fuel rate proposed case \$MWh Operating strategy SMWh Operating strategy SMWh MWh 70.00 Electricity rate - base case power syster Fuel rate - proposed case S/MWh 70.00 Electricity delivered Electricity electricity rate - proposed case S/MWh 70.00 Fuel rate - proposed case \$MWh Movin MWh Mult power capacity outpu 64.358 Power load following 64.358 Power load following 64.358 Heating load following 47.834<	uel type		Natural gas - mmBtu							
Power capacity Minimum capacity kW 7,520 40% 92.8% See product database Minimum capacity % 40% 92.8% See product database Minimum capacity % 40% 73.7% Betertricity exported to grid MWh 76 Manufacturer Solar Turbines 1 unit(s) Heat rate Btu/kWh 10,100 Heat rate Btu/kWh 10,100 Heat rate Btu/kWh 30.2 #teating capacity million Btu/h 76.0 Porenting strategy - base load power syster S/MWh 20.90.9% Fuel rate - base case heating systen S/MWh 70.00 Electricity rate - base case power syster S/MWh 70.00 Electricity export rate S/MWh 70.00 Electricity rate - proposed case S/MWh 70.00 Power capacity outpu 64.358 1.518 533 192.250 430 665.340 -1.090.696 Power load following 64.358 0 533 191.944 736 650.012 -1.065.568 Heating load following 64.358	uel rate	\$/mmBtu	8.570		-					
Power capacity Minimum capacity KW 7,520 40% 92.8% See product database Minimum capacity % 40% 40% 5ee product database Minimum capacity % 40% 7.520 92.8% See product database Minimum capacity % 40% 7.520 92.8% See product database Manufacturer MWh 47,834 73.7% 1 Init(s) Heat rate Btu/kWh 10,100 1 Init(s) 1 Heat rate Btu/kWh 10,100 1 Init(s) 1 Heat rate Btu/kWh 30.2 90.9% 1 Init(s) Fuel rate - base case heating system \$/MWh 30.2 90.9% 1 Init(s) Fuel rate - base case power system \$/MWh 70.00 1 Init(s) Init(s) Init(s) Electricity rate - base case \$/MWh 70.00 Init(s) Init(s) Init(s) Init(s) Init(s) Fuel rate - proposed case \$/MWh 70.00 Init(s) Init(s) Init(s) Init(s) Init(s)	a turbine									
Minimum capacity % 40% Bituricity delivered to load MWh 47,834 73.7% Betcricity delivered to load MWh 47,834 73.7% Model Solar Turbines 1 unit(s) Heat rate Bitu/kWh 10,100 Heat rate Bitu/kWh 10,00 Heat rate Solar Turbines 1 unit(s) Puel required million Btu/h 30.2 90.9% Powerating strategy - base load power syster S/MWh 0.00 Electricity rate - base case heating systen S/MWh 29.24 Electricity rate - base case S/MWh 20.00 Electricity rate - proposed case S/MWh 70.00 Operating strategy MWh WWh Remaining electricity Power of tase Operating strategy MWh 64,358 1.518 533 192,250 430 665,340 -1,090,696		134/	7 500	00.0%						
Electricity delivered to load MWh 47,834 73.7% Bitectricity exported to grid MWh 78 Manufacturer Solar Turbines 1 unit(s) Heat rate But/kWh 10,100 Heat rate % 60% Heating spacity million Btu/h 76.0 Prevenged regarding million Btu/h 70.00 Fuel rate - base case heating system \$/MWh 0.00 Electricity rate - base case power system \$/MWh 29.24 Electricity export rate \$/MWh 70.00 Electricity rate - proposed case \$/MWh 70.00 Fuel rate - proposed case \$/MWh 70.00 Power capacity outpu 64,358 1.518 533 192,250 430 665,340 -1,090,696 Power load following 64,358 0 533 191,244 736 650,012 -1,090,696 Heating load following 47,834				92.8%	See product database	2				
Electricity exported to grid MWh 76 Manufacturer Solar Turbines Model Taurus 70 1 unit(s) Heat rate Btu/kWh 10,100 Heat rate 60% 1 Heat rate 60% 1 Heat rate 800/200 90.9% Depreting strategy - base load power syster S/MWh 0.00 Fuel rate - base case heating systen S/MWh 70.00 Fuel rate - proposed case power syster S/MWh 29.24 Electricity rate - proposed case S/MWh 70.00 Fuel rate - proposed case S/MWh 70.00 Power capacity outpu 64,358 1,518 533 192.250 430 665,340 -1,090,096 Full power capacity outpu 64,358 0 533 192,250 430 483,894 -793,250 Heating load following 64,358 0 533 192,250 430<										
Manufacturer Solar Turbines Model Taurus 70 Heat rate Btu/kWh Heat rate 00% Heat rate 00% Heat rate 00% Heat rate 00% Heat recovery efficiency % Million Btu/h 76.0 Deperating strategy - base load power syster \$ Fuel rate - base case heating systen \$/MWh Electricity rate - base case \$/MWh Fuel rate - proposed case power syster \$/MWh Electricity rate - proposed case power syster \$/MWh Electricity rate - proposed case \$/MWh To load exported to grid electricity rate - proposed case \$/MWh To load exported to grid required million Btu Full power capacity outpu 64,358 1,518 Full power capacity outpu 64,358 0 Power tad following 47,834 76 Heating load following 47,834 76				73.7%						
Model Taurus 70 1 unit(s) Heat rate Heat rate Heat rate Heat recovery efficiency Fuel required Btu/kWh 10,100 % 60% Fuel required million Btu/h 76.0 Pperating strategy - base load power syster S/MWh 0.00 Fuel rate - base case heating systen S/MWh 0.00 Fuel rate - proposed case power syster S/MWh 29.24 Electricity rate - base case fuel system S/MWh 29.24 Electricity rate - proposed case S/MWh 70.00 Fuel rate - proposed case S/MWh 70.00 Electricity rate - proposed case S/MWh 70.00 Fuel rate - proposed case S/MWh 70.00 Fuel rate - proposed case S/MWh 70.00 Power capacity outpu 64.358 1,518 Full power capacity outpu 64.358 0 Power capacity outpu 64.358 0 Power capacity outpu 64.358 0 Heating load following 47,834 76 Heating load following 47,834 176		MWh	76		_					
Heat rate Heat rate Fuel required Heating capacity Btu/kWh 10,100 % Remaining 60.9% The second power syster Fuel rate - base case heating systen Electricity rate - base case heating systen Fuel rate - base case meating systen Electricity rate - base case meating systen Electricity rate - base case meating systen Electricity export rate Electricity rate - proposed case \$/MWh NO0 70.00 Electricity rate - proposed case S/MWh S/MWh 70.00 Electricity rate - proposed case S/MWh 70.00 Full power capacity outpu 64.358 1,518 533 192,250 430 665,340 -1,000,696 Power load following 64.358 0 533 192,250 430 665,012 -1,055,586 Heating load following 47,834 76 17,057 192,250 430 483,894 -793,250	anufacturer									
Heat recovery efficiency Fuel required % 60% million Btu/h Heating capacity million Btu/h 76.0 Operating strategy - base load power syster \$/MWh 0.00 Fuel rate - base case heating systen \$/MWh 70.00 Fuel rate - proposed case power syster \$/MWh 70.00 Electricity rate - proposed case \$/MWh 70.00 Full power capacity outpu 64.358 1,518 533 192,250 430 665,040 -1,080,696 Power capacity outpu 64.358 0 533 192,250 430 483,894 -793,250 Heating load following 47,834 76 17,057 192,250 430 483,894 -793,250	odel		Taurus 70		1 unit(s)					
Fuel required million Btu/h 76.0 Heating capacity million Btu/h 30.2 90.9% Derating strategy base case load power syster S/MW/h 0.00 Fuel rate - base case beating systen \$/MW/h 70.00 Fuel rate - proposed case power syster \$/MW/h 29.24 Electricity rate - proposed case \$/MW/h 70.00 Electricity rate - proposed case \$/MW/h 70.00 Fuel rate - proposed case \$/MW/h 70.00 Electricity rate - proposed case \$/MW/h 70.00 Operating strategy MW/h MW/h million Bt. MWh MWh MWh million Bt. profit (loss) Full power capacity outpu 64.358 1.518 533 192.250 430 665.012 -1.065.568 Heating load following 64.354 76 17.057 192.250 430 483.894 -793.250	eat rate	Btu/kWh	10,100							
Heating capacity million Btu/h 30.2 90.9% Operating strategy - base load power syster \$/MWh 0.00 Fuel rate - base case heating systen \$/MWh 70.00 Electricity rate - base case ower syster \$/MWh 70.00 Fuel rate - proposed case power syster \$/MWh 70.00 Electricity rate - proposed case \$/MWh 70.00 Full nower capacity outpu 64.358 1.518 533 192.250 430 665.340 -1.009.069 Power load following 64.358 0 533 192.250 430 483.894 -793.250	eat recovery efficiency	%	60%							
Heating capacity million Btu/h 30.2 90.9% Operating strategy - base load power syster \$/MWh 0.00 Fuel rate - base case heating systen \$/MWh 70.00 Electricity rate - base case ower syster \$/MWh 70.00 Fuel rate - proposed case power syster \$/MWh 70.00 Electricity rate - proposed case \$/MWh 70.00 Full nower capacity outpu 64.358 1.518 533 192.250 430 665.340 -1.009.069 Power load following 64.358 0 533 192.250 430 483.894 -793.250		million Btu/h	76.0							
Fuel rate - base case heating system \$/MW/h 0.00 Electricity rate - base case \$/MW/h 70.00 Fuel rate - proposed case power system \$/MW/h 29.24 Electricity export rate \$/MW/h 70.00 Electricity rate - proposed case \$/MW/h 70.00 Full power capacity outpu 64.358 1,518 533 192,250 430 665,340 -1,090,696 Power load following 64.358 0 533 192,250 430 665,012 -1,055,568 Heating load following 47,834 76 17,057 192,250 430 483,894 -793,250				90.9%						
Fuel rate - base case heating system \$/MWh 0.00 Electricity rate - base case power system \$/MWh 70.00 Fuel rate - proposed case power system \$/MWh 70.00 Electricity export rate \$/MWh 70.00 Electricity rate - proposed case \$/MWh 70.00 Full power capacity outpu 64,358 1,518 533 192,250 430 665,340 -1,090,696 Power load following 64,358 0 533 192,250 430 665,012 -1,065,586 Heating load following 47,834 76 17,057 192,250 430 483,894 -793,250	4)									
Electricity rate - base case \$/MWh 70.00 Fuel rate - proposed case power system \$/MWh 29.24 Electricity export rate \$/MWh 70.00 Electricity rate - proposed case \$/MWh 70.00 S/MWh 70.00 70.00 Electricity rate - proposed case \$/MWh 70.00 Depending strategy Remaining to load Remaining exported to grid Remaining required Power Operating profit (loss) Full power capacity outpu 64,358 1,518 533 192,250 430 665,0.012 -1.006,568 Heating load following 47,834 76 17,057 192,250 430 483,894 -793,250		¢/\\/\/h	0.00							
Fuel rate - proposed case power system \$/MWh 29.24 Electricity export rate \$/MWh 70.00 Electricity rate - proposed case \$/MWh 70.00 Volume S/MWh 70.00 S/MWh 70.00 Electricity rate - proposed case Remaining electricity Remaining electricity Remaining Heating to load Remaining electricity Power Operating profit (loss) Operating strateg) MWh MWh MWh million Bt million Bt million Bt \$ Full power capacity outpu 64,358 1,518 533 192,250 430 665,340 -1,090,696 Power load following 64,358 0 533 192,250 430 483,894 -793,250										
Electricity export rate \$/MWh 70.00 Electricity rate - proposed case \$/MWh 70.00 Volume \$/MWh 70.00 Electricity rate - proposed case \$/MWh 70.00 Electricity rate - proposed case \$ Operating strateg) Electricity delivered to grid required recovered required system fuel willion Bt. Power of the system fuel willion Bt. \$ Full power capacity outpu 64,358 1,518 533 192,250 430 665,340 -1,006,696 Power capacity outpu 64,358 0 533 192,250 430 483,894 -793,250										
Electricity rate - proposed case \$/MWh 70.00 Electricity rate - proposed case \$/MWh 70.00 Electricity rate - proposed case \$/MWh 70.00 Electricity delivered Electricity electricity exported to grid exported to grid required Remaining required Remaining heat Power Operating profit (loss) Operating strategy MWh MWh MWh million Bt. million Bt. \$ Full power capacity outpu 64,358 1,518 533 192,250 430 665,012 -1,086,568 Power load following 64,358 0 533 192,250 430 483,894 -793,250										
Operating strategy Remaining to load Remaining electricity Remaining electricity Remaining Heating load following Operating Operating strategy MWh MWh MWh million Bt million Bt million Bt profit (loss) Full power capacity outpu 64,358 1,518 533 192,250 430 665,340 -1,090,696 Power load following 64,358 0 533 192,250 430 665,012 -1,085,588 Heating load following 47,834 76 17,057 192,250 430 483,894 -793,250										
Electricity delivered Electricity electricity Heat heat Power Operating Operating strategy MWh MWh MWh MWh million Btu % <t< td=""><td>ectricity rate - proposed case</td><td>\$/MWh</td><td>70.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ectricity rate - proposed case	\$/MWh	70.00							
Electricity delivered Electricity electricity Heat heat Power Operating Operating strategy MWh MWh MWh MWh million Btu % <t< td=""><td></td><td></td><td></td><td></td><td>Benelnine</td><td></td><td>Demoining</td><td></td><td></td><td></td></t<>					Benelnine		Demoining			
Operating strategyto load MWhexported to grid MWhrequired recovered million Btsystem fuel million Bt.profit (loss)Full power capacity outpu64,3581,518533192,250430665,340-1,090,696Power load following64,3580533192,250430665,012-1,085,568Heating load following47,8347617,057192,250430483,894-793,250			Electricity della	F 1 4-1 - 14-		114		B	0	
Operating strateg) MWh MWh MWh million Btt million B										
Full power capacity outpu 64,358 1,518 533 192,250 430 665,340 -1,090,696 Power load following 64,358 0 533 191,944 736 650,012 -1,065,568 Heating load following 47,834 76 17,057 192,250 430 483,894 -793,250							required		profit (loss)	Efficience
Power load following 64,358 0 533 191,944 736 650,012 -1,065,568 Heating load following 47,834 76 17,057 192,250 430 483,894 -793,250										%
Heating load following 47,834 76 17,057 192,250 430 483,894 -793,250										62.7%
	ower load following		64,358		533	191,944	736	650,012	-1,065,568	63.3%
	eating load following		47,834	76	17,057	192,250	430	483,894	-793,250	73.5%
Select operating strategy Heating load following	elect operating strategy		Heating load following]					

Return to Energy Model sheet

RETScreen Cost Analysis - Combined cooling, heating & power project

Dro feesibility analyzin	,	Cost reference	9					
Pre-feasibility analysis	-			С	ost reference	None		
Feasibility analysis	1	Second current	ncy					
tial costs (credits)		Unit	Quantity		Unit cost	Amount	Relative costs	
Feasibility study								
Feasibility study		cost	1	\$	13,000 \$	13,000		
	Sub-total:			Ŧ	S	13,000	0.1%	
Development	oub total.				•	,	0.170	
Development		cost	1	¢	65,000 \$	65,000		
Development	0.1.1.1.1.1	cost	1	\$			0.5%	
	Sub-total:				\$	65,000	0.5%	
Engineering								
Engineering		cost	1	\$	425,000 \$	425,000		
	Sub-total:				\$	425,000	3.5%	
Power system								
Base load - Gas turbine		kW	7,520	\$	425 \$	3,196,000		
Peak load - Grid electricity		kW	584	Ŷ	\$	-		
Road construction	г	km	504	-	\$	-		
	ŀ			-		-		
Transmission line	L	km		-	\$	-		
Substation		project			\$	-		
Energy efficiency measures		project			\$	-		
Custom		credit			\$	-		
					\$	-		
	Sub-total:				\$	3,196,000	26.6%	
Heating system	000 10101.				÷	0,000,000	20.070	
Base load - Gas turbine	F	kW	0.042.0		\$			
			8,843.6			-		
Peak load - Boiler	L	million Btu/h	3.2		\$	-		
Energy efficiency measures		project			\$	-		
HRSG		cost	1	\$	525,000 \$ 242,000 \$	525,000		
Duct Burner		cost	1	\$	242,000 \$	242,000		
	Sub-total:				\$	767,000	6.4%	
Cooling system						,		
Base load - Absorption	Г	RT	3,733.4	\$	1,150 \$	4,293,410		
	Ļ		5,755.4	Ψ		4,233,410		
Energy efficiency measures		project		_	\$	-		
		cost	1		\$	-		
					\$	-		
	Sub-total:				\$	4,293,410	35.7%	
Balance of system & miscellaneous								
Balance of system & miscellaneous		cost	1	\$	1,956,900 \$	1,956,900		
Contingencies		%	10.0%	\$	10,716,310 \$	1,071,631		
Interest during construction	Г	8.00%	6 month(s)	Š	11,787,941 \$	235,759		
	Sub-total:	0.0070	5	I ¥	s	3,264,290	27.1%	
	Gub-ioidl.							
tal initial costs					\$	12,023,700	100.0%	
nual costs (credits)		Unit	Quantity		Unit cost	Amount	Relative costs	
0&M		_						
Parts & labour		project	1	\$	70,000 \$	70,000		
O&M		cost	1	\$	98,812 \$	98,812		
Contingencies		%	5.0%	\$	168,812 \$	8,441		
	Sub total	, ,	0.070	Ý	\$	177,253	3.2%	
F	Sub-total:				\$	177,253	3.270	
Fuel								
Natural gas		mmBtu	484,419	\$	8.570 \$	4,151,467		
Electricity		MWh	17,057	\$	70.000 \$	1,193,985		
· · ·	Sub-total:				\$	5,345,452	96.8%	
tal annual costs	535 10101.				\$	5,522,704	100.0%	
lai amiuai 60818					\$	5,522,704	100.0%	
riodic costs (credits)		Unit	Year		Unit cost	Amount		
			7	\$		752,000		
Overhaul		cost	1	¢		/52,000		
					\$	-		
					\$	-		
End of project life					\$	-		Go to GHG Analysis

RETScreen Greenhouse Gas (GHG) Emission Reduction Analysis - Combined cooling, heating & power project

GHG Analysis		Simplified	analveis					
Potential CDM project			•					
		Standard	•					
		Custom a	nalysis					
e case electricity system (Ba	seline)							
			GHG emission					
			factor	T&D	GHG emission			
Country - region		Fuel type	(excl. T&D) tCO2/MWh	losses %	factor tCO2/MWh	1		
United States of America (USA	4)	All types	0.579	5.0%	0.609	1		
•	,	7 in typeo	0.010	0.070	0.000			
Baseline changes during pro	oject life							
case system GHG summar	y (Baseline)							
						Fuel	GHG emission	
	Fuel mix					consumption	factor	GHG emis
Fuel type	%					MWh	tCO2/MWh	tCO2
Electricity	100.0%					83,473	0.609	50,8
Total	100.0%					83,473	0.609	50,8
osed case system GHG sun	mon (Combined	occling booting	9 nowor project)					
osed case system GHG sun	imary (Combined	cooling, nearing	a power project)					
						Fuel	GHG emission	
	Fuel mix					consumption	factor	GHG emis
	%					MWh	tCO2/MWh	tCO2
	00.00/					141,969	0.179 0.609	25,4 10,3
Natural gas	89.3% 10.7%							10,5
Fuel type Natural gas Electricity Total	10.7%					17,057		35.8
Natural gas						17,057 159,026	0.225	35,8
Natural gas Electricity	10.7%	76	T&D losses	1.0%				35,8
Natural gas Electricity Total	10.7% 100.0%	76	T&D losses	1.0%		159,026	0.225	

Combined cooling, heating	Base case GHG emission tCO2	Proposed case GHG emission tCO2			Gross annual GHG emission reduction tCO2	GHG credits transaction fee %	Net annual GHG emission reduction tCO2
& power project	50,874	35,806			15,068	0%	15,068
Net annual GHG emission reduction	15,068	tCO2	is equivalent to	3,063	Cars & light trucks	s not used	al Summary sheet

RETScreen Financial Summary - Combined cooling, heating & power project

Base case system Power Heating Cooling Fuel cost - base case	Peak load kW 10,174 0 13,130 Capacity kW 8,104 9,781 13,130 % % % % % % % % % % % % %	Energy demand MWh 64,891 0 76,233 Energy delivered MWh 64,967 56,469 76,233 2.0% 10.0% 2.0% 10.0% 25 	End-use energy rate \$/MWh 70.00 0.00 16.99 End-use energy rate \$/MWh 82.21 0.08 0.00 Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system Balance of system	Fuel cost \$ 4,542,368 0 1,295,383 5,837,752 Fuel cost \$ 5,340,954 4,498 0 5,345,452	0.1% 0.5% 3.5%	\$ \$	13,000	Year # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ash flows Pre-tax (3,607,110) (484,083) (477,548) (470,881) (464,081) (457,145) (450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613 457,585	After-tax (3,607,110) (484,083) (477,548) (477,548) (470,881) (464,081) (457,145) (450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613 455,555	Cumulative (3,607,110 (4,091,193 (4,568,741 (5,039,622 (5,503,703 (5,960,849) (6,410,919 (7,717,586 (8,153,080 (8,581,067 (9,001,396 (9,413,914 (9,818,465 (10,214,890 (11,595,274 (11,974,954 (11,535,138 (11,086,525)
Base case system Power Heating Cooling Fuel cost - base case Proposed case system Power Heating Cooling Fuel cost - proposed case Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	kW 10,174 0 13,130 Capacity kW 8,104 9,781 13,130 % % % % % % % % \$ % % \$ % % % % % % % % % % % % %	MWh 64,891 0 76,233 Energy delivered MWh 64,967 56,469 76,233 2.0% 10.0% 25 	\$/MWh 70.00 0.00 16.99 End-use energy rate \$/MWh 82.21 0.08 0.00 Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	\$ 4,542,368 0 1,295,383 5,837,752 Fuel cost \$ 5,340,954 4,498 0 5,345,452	0.1% 0.5% 3.5%		13,000	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	(3,607,110) (484,083) (477,548) (470,881) (464,081) (457,145) (450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(3,607,110) (484,083) (477,548) (470,881) (464,081) (457,145) (457,145) (457,145) (457,145) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(4,091,193) (4,568,741) (5,039,622) (5,503,703) (5,960,849) (6,410,919) (7,717,586) (8,153,080) (8,581,067) (9,001,396) (9,413,914) (9,818,465) (10,214,890) (11,595,274) (11,595,274) (11,535,138) (11,086,525)
Power Heating Cooling Fuel cost - base case Proposed case system Power Heating Cooling Fuel cost - proposed case Financial parameters General Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	10,174 0 13,130 Capacity kW 8,104 9,781 13,130 % % % % % % % % % % % % %	64,891 0 76,233 Energy delivered <u>MWh</u> 64,967 56,469 76,233 2.0% 10.0% 25 	70.00 0.00 16.99 End-use energy rate \$/MWh 82.21 0.08 0.00 Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	0 1,295,383 5,837,752 Fuel cost \$ 5,340,954 4,498 0 5,345,452	0.1% 0.5% 3.5%		13,000	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	(484,083) (477,548) (470,881) (464,081) (457,145) (450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(484,083) (477,548) (470,881) (464,081) (457,145) (450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(4,091,193) (4,568,741) (5,039,622) (5,503,703) (5,960,849) (6,410,919) (7,717,586) (8,153,080) (8,581,067) (9,001,396) (9,413,914) (9,818,465) (10,214,890) (11,595,274) (11,595,274) (11,535,138) (11,086,525)
Cooling Fuel cost - base case Proposed case system Power Heating Cooling Fuel cost - proposed case Financial parameters General Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt Equity Debt interest rate Debt term Debt payments	13,130 Capacity kW 8,104 9,781 13,130 % % % % % % % % % % % % %	76,233 Energy delivered MWh 64,967 56,469 76,233 2.0% 2.0% 10.0% 25 70.0% 8,416,590 3,607,110	16.99 End-use energy rate \$/MWh 82.21 0.08 0.00 Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	1,295,383 5,837,752 Fuel cost \$ 5,340,954 4,498 0 5,345,452	0.1% 0.5% 3.5%		13,000	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	(470,881) (464,081) (457,145) (450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(470,881) (464,081) (457,145) (450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(5,039,622) (5,503,703) (5,960,849) (6,410,919) (7,717,586) (8,581,067) (9,001,396) (9,413,914) (9,818,465) (10,214,890) (11,595,274) (11,595,274) (11,535,138) (11,086,525)
Fuel cost - base case Proposed case system Power Heating Cooling Fuel cost - proposed case Financial parameters General Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	Capacity kW 8,104 9,781 13,130 % % % % % % \$ % % \$ % % yr	Energy delivered MWh 64,967 56,469 76,233 2.0% 2.0% 10.0% 25 	End-use energy rate \$/MWh 82.21 0.08 0.00 Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	5,837,752 Fuel cost \$ 5,340,954 4,498 0 5,345,452	0.1% 0.5% 3.5%		13,000	4 5 6 7 8 9 10 11 12 13 14 15 16 17	(464,081) (457,145) (450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(464,081) (457,145) (450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(5,503,703) (5,960,849) (6,410,919) (7,717,586) (8,581,067) (9,001,396) (9,413,914) (9,818,465) (10,214,890) (11,595,274) (11,574,954) (11,535,138) (11,086,525)
Proposed case system Power Heating Cooling Fuel cost - proposed case Fuel cost - proposed case Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	kW 8,104 9,781 13,130 % % % % % \$ % \$ % yr [\$ % yr	delivered <u>MWh</u> 64,967 56,469 76,233 2.0% 2.0% 10.0% 25 	energy rate \$/MWh 82.21 0.08 0.00 Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	Fuel cost \$ 5,340,954 4,498 0 5,345,452	0.1% 0.5% 3.5%		13,000	5 6 7 8 9 10 11 12 13 14 15 16 17	(457,145) (450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(457,145) (450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(5,960,849) (6,410,919) (7,717,586) (8,153,080) (8,581,067) (9,001,396) (9,413,914) (9,818,465) (10,214,890) (11,595,274) (11,595,274) (11,535,138) (11,086,525)
Proposed case system Power Heating Cooling Fuel cost - proposed case Financial parameters General Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	kW 8,104 9,781 13,130 % % % % % \$ % \$ % yr [\$ % yr	delivered <u>MWh</u> 64,967 56,469 76,233 2.0% 2.0% 10.0% 25 	energy rate \$/MWh 82.21 0.08 0.00 Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	\$ 5,340,954 4,498 0 5,345,452	0.1% 0.5% 3.5%		13,000	6 7 8 9 10 11 12 13 14 15 16 17	(450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(450,071) (1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(6,410,919) (7,717,586) (8,153,080) (9,001,396) (9,413,914) (9,818,465) (10,214,890) (11,595,274) (11,574,954) (11,535,138) (11,086,525)
Proposed case system Power Heating Cooling Fuel cost - proposed case Financial parameters General Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	kW 8,104 9,781 13,130 % % % % % \$ % \$ % yr [\$ % yr	delivered <u>MWh</u> 64,967 56,469 76,233 2.0% 2.0% 10.0% 25 	energy rate \$/MWh 82.21 0.08 0.00 Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	\$ 5,340,954 4,498 0 5,345,452	0.1% 0.5% 3.5%		13,000	7 8 9 10 11 12 13 14 15 16 17	(1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(1,306,666) (435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(7,717,586) (8,153,080) (8,581,067) (9,001,396) (9,413,914) (9,818,465) (10,214,890) (11,595,274) (11,595,274) (11,535,138) (11,086,525)
Proposed case system Power Heating Cooling Fuel cost - proposed case Financial parameters General Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	kW 8,104 9,781 13,130 % % % % % \$ % \$ % yr [\$ % yr	MWh 64,967 56,469 76,233 2.0% 2.0% 10.0% 25 70.0% 8,416,590 3,607,110	\$/MWh 82.21 0.08 0.00 Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	\$ 5,340,954 4,498 0 5,345,452	0.1% 0.5% 3.5%		13,000	9 10 11 12 13 14 15 16 17	(427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(435,494) (427,987) (420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(8,581,067 (9,001,396) (9,413,914) (9,818,465) (10,214,890) (11,595,274) (11,974,954) (11,535,138) (11,086,525)
Power Heating Cooling Fuel cost - proposed case Fuel cost - proposed case Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	8,104 9,781 13,130 % % % yr \$ \$ % \$ \$ % yr	64,967 56,469 76,233 2.0% 2.0% 10.0% 25 70.0% 8,416,590 3,607,110	82.21 0.08 0.00 Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	5,340,954 4,498 0 5,345,452	0.1% 0.5% 3.5%		13,000	10 11 12 13 14 15 16 17	(420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(420,329) (412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(9,001,396) (9,413,914) (9,818,465) (10,214,890) (11,595,274) (11,974,954) (11,535,138) (11,086,525)
Heating <u>Cooling</u> Fuel cost - proposed case Financial parameters General Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	9,781 13,130 % [% yr yr [\$ % [\$ % [\$ % [\$ % [} % [%] %	56,469 76,233 2.0% 2.0% 10.0% 25 70.0% 8,416,590 3,607,110	0.08 0.00 Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	4,498 0 5,345,452	0.1% 0.5% 3.5%		13,000	11 12 13 14 15 16 17	(412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(412,518) (404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(9,413,914) (9,818,465) (10,214,890) (11,595,274) (11,974,954) (11,535,138) (11,086,525)
Cooling Fuel cost - proposed case Financial parameters General Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	13,130 % [% yr [\$ % [\$ % [%] % yr [76,233 2.0% 2.0% 10.0% 25 70.0% 8,416,590 3,607,110	0.00 Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	0 5,345,452	0.1% 0.5% 3.5%		13,000	12 13 14 15 16 17	(404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(404,551) (396,425) (1,380,384) (379,681) 439,816 448,613	(9,818,465 (10,214,890 (11,595,274 (11,974,954 (11,535,138 (11,086,525
Fuel cost - proposed case Financial parameters General Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	% [%] yr [\$ { \$ %] yr [2.0% 2.0% 10.0% 25 70.0% 8,416,590 3,607,110	Project costs and s Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	5,345,452	0.1% 0.5% 3.5%		13,000	13 14 15 16 17	(396,425) (1,380,384) (379,681) 439,816 448,613	(396,425) (1,380,384) (379,681) 439,816 448,613	(10,214,890 (11,595,274 (11,974,954 (11,535,138 (11,086,525
General Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	% yr [\$ [\$ \$ \$ yr [2.0% 10.0% 25 70.0% 8,416,590 3,607,110	Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	avings/income s	0.1% 0.5% 3.5%		13,000	15 16 17	(379,681) 439,816 448,613	(379,681) 439,816 448,613	(11,974,954 (11,535,138 (11,086,525
General Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	% yr [\$ [\$ \$ \$ yr [2.0% 10.0% 25 70.0% 8,416,590 3,607,110	Initial costs Feasibility study Development Engineering Power system Heating system Cooling system	avings/income s	0.1% 0.5% 3.5%		13,000	16 17	439,816 448,613	439,816 448,613	(11,535,138 (11,086,525
General Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	% yr [\$ [\$ \$ \$ yr [2.0% 10.0% 25 70.0% 8,416,590 3,607,110	Initial costs Feasibility study Development Engineering Power system Heating system Cooling system		0.1% 0.5% 3.5%		13,000	17	448,613	448,613	(11,086,525
Fuel cost escalation rate Inflation rate Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	% yr [\$ [\$ \$ \$ yr [2.0% 10.0% 25 70.0% 8,416,590 3,607,110	Feasibility study Development Engineering Power system Heating system Cooling system		0.5% 3.5%		13,000				
Discount rate Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	% yr [\$ [\$ \$ \$ yr [10.0% 25 70.0% 8,416,590 3,607,110	Development Engineering Power system Heating system Cooling system		3.5%			10	-01,000	457,585	(10,628,940
Project life Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	yr [% [\$ \$ % [yr]	25 70.0% 8,416,590 3,607,110	Power system Heating system Cooling system		3.5%		65,000	19	466,737	466,737	(10,162,203
Finance Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	\$ [% [\$ % [yr]	70.0% 8,416,590 3,607,110	Heating system Cooling system			\$	425,000	20	476,072	476,072	(9,686,132
Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	% \$ % yr	8,416,590 3,607,110	Cooling system		26.6%	\$	3,196,000	21	(654,188)	(654,188)	(10,340,320
Incentives and grants Debt ratio Debt Equity Debt interest rate Debt term Debt payments	% \$ % yr	8,416,590 3,607,110			6.4% 35.7%	\$ \$	767,000 4,293,410	22 23	495,305 505,211	495,305 505,211	(9,845,015 (9,339,804
Debt ratio Debt Equity Debt interest rate Debt term Debt payments	% \$ % yr	8,416,590 3,607,110		& misc	27.1%	э \$	3,264,290	23	515,315	515,315	(8,824,489
Debt Equity Debt interest rate Debt term Debt payments	\$ \$ % yr	8,416,590 3,607,110	Total initial costs		100.0%	\$	12,023,700	25	525,621	525,621	(8,298,868
Debt interest rate Debt term Debt payments	\$ % yr						,,	-	,,	,	(-,,-00
Debt term Debt payments	yr										
Debt payments		5.00%									
	⊅/yi	15 810,874	Annual costs and d	lebt payments		¢	177.050				
Income tax analysis		010,074	Fuel cost - propose	ed case		\$ \$	177,253 5,345,452				
Income tax analysis			Debt payments - 18			Ψ \$	810,874				
	ſ		Total annual costs	S		\$	6,333,578				
			Periodic costs (cre	dits)							
			Overhaul - 7 yrs			\$	752,000				
			Annual savings and	d income							
			Fuel cost - base ca	se		\$	5,837,752				
Annual income			Electricity export in	come		\$	5,335				
Customer premium income (rebate)	I										
			Total annual savir	ngs and income		\$	5,843,087				
						Ŧ	0,0 10,001				
			Financial viability								
			Pre-tax IRR - equit			%	-8.1%				
			Pre-tax IRR - asset			%	-10.1%				
			After-tax IRR - equ After-tax IRR - asse			%	-8.1%				
Electricity export income			Simple payback	els		% \/r	-10.1% 37.5				
Electricity exported to grid	MWh	76	Equity payback			yr yr	> project				
Electricity export rate	\$/MWh	70.00	Net Present Value	(NPV)		\$	(7,166,921)				
Electricity export income	\$	5,335	Annual life cycle sa			\$/yr	(789,566)				
Electricity export escalation rate	%	2.0%	Benefit-Cost (B-C)			-	(0.99)				
		_	Debt service cover			-	(0.70)				
Clean Energy (CE) production income	I		GHG reduction cos	st		\$/tCO2	52				
			Cumulative cash flo	ows graph							
				5							
			0			_					
			0	1 2 3 4	56	7 8	9 10 11 12	2 13 14	15 16 17 18	3 19 20 21	22 23 24 25
		_	(2,000,000) -								
GHG reduction income	ſ		(\$)								
Net GHG reduction	tCO2/yr	15,068	(\$) (000,000,00,0) (32) (32) (32) (32) (32) (32) (32) (32								
Net GHG reduction - 25 yrs	tCO2/yr	376,708	fl		_						
		0,0,100	(6,000,000)								
			<u>8</u> (8,000,000)								
			Cnmrlative (10,000,000) Cnmrlative (10,000,000) Cnmrlative								
			a (10,000,000) -							\sim	
			Č							-	
			(12,000,000)								
			, ,,,								
			(14,000,000)								
			(1,000,000)								
						•	Year				

9/25/2006; FLL 7.5 Mkw CHP Calcs w\$8.57 Gas.xls

RETScreen Sensitivity and Risk Analysis - Combined cooling, heating & power project

Perform analysis on	After-ta	ax IRR - equity				
Sensitivity range		20%	-			
Threshold	12	%	-			
				Initial costs		\$
Fuel cost - base case		9.618.960	10.821,330	12,023,700	13,226,070	پ 14.428.440
\$		-20%	-10%	0%	10%	20%
4,670,201	-20%	negative	negative	negative	negative	negative
5,253,977	-10%	negative	negative	negative	negative	negative
5,837,752	0%	-6.0%	-7.1%	-8.1%	-9.0%	-9.8%
6,421,527	10%	13.1%	10.3%	8.1%	6.4%	4.9%
7,005,302	20%	32.2%	26.8%	22.5%	19.2%	16.5%
		-				
				Initial costs		\$
Fuel cost - proposed ca	Se	9,618,960	10,821,330	12,023,700	13,226,070	14,428,440
\$		-20%	-10%	0%	10%	20%
4,276,361	-20%	28.8%	23.8%	20.0%	17.0%	14.5%
4,810,907	-10%	11.6%	9.0%	7.0%	5.3%	3.9%
5,345,452	0%	-6.0%	-7.1%	-8.1%	-9.0%	-9.8%
5,879,997	10%	negative	negative	negative	negative	negative
6,414,542	20%	negative	negative	negative	negative	negative
		0.040.000	10.001.000	Initial costs	10.000.070	\$
Debt interest rate		9,618,960	10,821,330	12,023,700	13,226,070	14,428,440
%	2221	-20%	-10%	0%	10%	20%
4.00%	-20%	-5.4%	-6.5%	-7.5%	-8.4%	-9.2%
4.50%	-10%	-5.7%	-6.8%	-7.8%	-8.7%	-9.5%
5.00%	0%	-6.0%	-7.1%	-8.1%	-9.0%	-9.8%
5.50% 6.00%	10% 20%	-6.2% -6.5%	-7.4% -7.7%	-8.4% -8.7%	-9.3% -9.5%	-10.0% -10.3%

A.2.

HVAC Log Data

Refer to the CD titled HVAC Log Data that includes a number of sub folders that contain Excel spreadsheets of many HVAC data trends. This data is meaningful only in electronic format that allows manipulation of the large amount of data.

B.1.

Lighting Audit Data

RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
1	BCAD BLDG NORTH	1	COPY RM	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
2	BCAD BLDG NORTH	1	COPY RM	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
3	BCAD BLDG NORTH	1	POSADAS	1	1	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.086	0.050
4	BCAD BLDG NORTH	1	POSADAS	1	1	2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
5	BCAD BLDG NORTH	1	LAGERSTEDT	3	3	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.177	0.150
6	BCAD BLDG NORTH	1	DOUGE	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
7	BCAD BLDG NORTH	1	DOUGE	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
8	BCAD BLDG NORTH	1	GAMBRILL	2	2	2X42T8	2X42T28	· v	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT TO 2 EXAMPLE CONTOURD BALLAST	0.118	0.100
9	BCAD BLDG NORTH	1	HALL	4	4	2X42T8	2X42T28R	v	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.400	0.200
10	BCAD BLDG NORTH	1	HALL	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT TO 2 EAM ELECTRONIC BALLAST REFLECTOR	0.258	0.150
11	BCAD BLDG NORTH	1	PACITTO	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
12	BCAD BLDG NORTH	1	RESTROOMS	4	4	2X44T8	2X42T28R	· v	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT TO 2 EAM ELECTRONIC BALLAST REFLECTOR	0.400	0.200
13	BCAD BLDG NORTH	1	PLAN STORAGE	3	3	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT TO 2 EAM ELECTRONIC BALLAST REFLECTOR	0.300	0.150
14	BCAD BLDG NORTH	1	CLOSET	1	1	2X22T8U6	NR	v	6,750	2-F032T8U - ELECTRONIC	NO RETROFIT	0.059	0.000
14	BCAD BLDG NORTH	1	STORAGE	1	1	2X221808	2X42T28R	v	6,750	4 -F032T80 - ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.009	0.050
16	BCAD BLDG NORTH	1	AUDITORIUM	18	18	2X4418 2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT TO 2-LAMP ELECTRONIC BALLAST REFLECTOR	1.062	0.900
17	BCAD BLDG NORTH	1	AUDITORIUM	6	۰۱۰ ۹	2X4218	2X42T28R	Y	6,750	4 -F032T8 ELECTRONIC 4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST 2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.600	0.300
18	BCAD BLDG NORTH	1	GENERAL AREA	1	1	2X4418	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT TO 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
19	BCAD BLDG NORTH		GENERAL AREA	12	12	2X4418 2X42T8	2X42T28	v	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT 18 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.708	0.600
20	BCAD BLDG NORTH		WELCH	2	2	2X4218 2X44T8	2X42T28R	v	6,750	4 -F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST 2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
				4	4	2X4418	2X42T28R	Y	6,750			0.200	0.100
21	BCAD BLDG NORTH		STORAGE					Y			2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR		
22	BCAD BLDG NORTH		FILE RM	2	2	2X42T8	2X42T28		6,750		2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
23	BCAD BLDG NORTH	1	FIRE PANEL	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
24	BCAD BLDG NORTH	1	HALL	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
25	BCAD BLDG NORTH	1	IDF	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
26	BCAD BLDG NORTH	1	BREAK RM	3	3	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.300	0.150
27	BCAD BLDG NORTH	1	OPEN AREA	6	6	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.354	0.300
28	BCAD BLDG NORTH	1	OFFICE	3	3	2X44T8	2X42T28R	Ŷ	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.300	0.150
29	BCAD BLDG NORTH	1	GREGORY	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
30	BCAD BLDG NORTH	1	OPEN AREA	13	13	2X42T8	2X42T28	Ŷ	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.767	0.650
31	BCAD BLDG NORTH	1	CONFERENCE #9	4	4	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.400	0.200
32	BCAD BLDG NORTH	1	OPEN AREA	16	16	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.944	0.800
33	BCAD BLDG NORTH	1	OPEN AREA	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
34	BCAD BLDG NORTH	1	BOWMAN	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
35	BCAD BLDG NORTH	1	BOWMAN	1	1	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.086	0.050
36	BCAD BLDG NORTH	1	OFFICE	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
37	BCAD BLDG SOUTH	1	HALL	14	14	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.826	0.700
38	BCAD BLDG SOUTH	1	OFFICE	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
39	BCAD BLDG SOUTH	1	SAME	3	3	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.300	0.150
40	BCAD BLDG SOUTH	1	WEBSTER	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
41	BCAD BLDG SOUTH	1	KITCHEN	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
42	BCAD BLDG SOUTH	1	KITCHEN	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
43	BCAD BLDG SOUTH	1	HERNANDEZ	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
44	BCAD BLDG SOUTH	1	NEXT OFFICE	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
45	BCAD BLDG SOUTH	1	CONFERENCE	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
46	BCAD BLDG SOUTH	1	CONFERENCE	4	4	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.236	0.200
47	BCAD BLDG SOUTH	1	PAULSON	3	3	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.177	0.150
48	BCAD BLDG SOUTH	1	KREIN	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050

				EXIOT		Estat0 at	Dura Orada	4/2	11	E in Breachtair	Prophysical	F -1-41340	Decelott
RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
49	BCAD BLDG SOUTH	1	GILLOCK	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
50	BCAD BLDG SOUTH	1	SOLINGER	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
51	BCAD BLDG SOUTH	1	GENERAL AREA	4	4	2X42T8	2X42T28	Ŷ	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.236	0.200
52	BCAD BLDG SOUTH	1	WORK AREA	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
53	BCAD BLDG SOUTH	1	CONFERENCE #3	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
54	BCAD BLDG SOUTH	1	CONFERENCE #3	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
55	BCAD BLDG SOUTH	1	HALL	27	27	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.593	1.350
56	BCAD BLDG SOUTH	1	GENERAL AREA	6	6	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.354	0.300
57	BCAD BLDG SOUTH	1	IDF	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
58	BCAD BLDG SOUTH	1	ERBAN	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
59	BCAD BLDG SOUTH	1	O'HARA	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
60	BCAD BLDG SOUTH	1	NONNEMACHER	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
61	BCAD BLDG SOUTH	1	GENERAL AREA	4	4	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.236	0.200
62	BCAD BLDG SOUTH	1	DOS SANTOS	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
63	BCAD BLDG SOUTH	1	POKRYEKE	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
64	BCAD BLDG SOUTH	1	GENERAL AREA	7	7	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.413	0.350
65	BCAD BLDG SOUTH	1	BREAK RM	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
66	BCAD BLDG SOUTH	1	BREAK RM	1	1	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.086	0.050
67	BCAD BLDG SOUTH	1	CONFERENCE #4	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
68	BCAD BLDG SOUTH	1	CONFERENCE #4	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
69	BCAD BLDG SOUTH	1	CONFERENCE #4	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
70	BCAD BLDG SOUTH	1	RESTROOMS	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
71	BCAD BLDG SOUTH	1	RESTROOMS	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
72	BCAD BLDG SOUTH	1	OPEN AREA	4	4	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.236	0.200
73	BCAD BLDG SOUTH	1	HALL	4	4	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.236	0.200
74	BCAD BLDG SOUTH	1	JANITOR	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
75	BCAD BLDG SOUTH	1	STORAGE	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
76	BCAD BLDG SOUTH	1	HALL	3	3	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.177	0.150
77	BCAD BLDG SOUTH	1	WALSH	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
78	BCAD BLDG SOUTH	1	GOVIN	3	3	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.177	0.150
79	BCAD BLDG SOUTH	1	LEE	3	3	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.177	0.150
80	BCAD BLDG SOUTH	1	CONFERENCE #5	4	4	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.236	0.200
81	BCAD BLDG SOUTH	1	CONFERENCE #5	4	4	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.400	0.200
82	BCAD BLDG SOUTH	1	RECEPTION	5	5	2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.295	0.250
83	BCAD BLDG SOUTH	1	MAILROOM	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
84	BCAD BLDG SOUTH	1	RESTROOMS	4	4	2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.236	0.200
85	BCAD BLDG SOUTH	1	HALL	15	15	2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.885	0.750
86	BCAD BLDG SOUTH	1	TRAINING RM	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
87	BCAD BLDG SOUTH	1	TRAINING RM	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
88	BCAD BLDG SOUTH	1	TRAINING RM	4	4	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.236	0.200
89	BCAD BLDG SOUTH	1	BREAK RM	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
90	BCAD BLDG SOUTH	1	BREAK RM	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
91	BCAD BLDG SOUTH	1	CLOSET	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
92	BCAD BLDG SOUTH	1	LIBRARY	2	2	2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
93	BCAD BLDG SOUTH	1	FILE ROOM	2	2	2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
94	BCAD BLDG SOUTH	1	STORAGE	1	1	2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
95	BCAD BLDG SOUTH	1	OFFICE	3	3	2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.177	0.150
96	BCAD BLDG SOUTH	1	PIMERO	3	3	2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.177	0.150
	20.2 2250 00011		i initito	Ĭ	. <u> </u>		-//		5,, 65			v/	0.100

		I I		1		г – т							T
RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
97	BCAD BLDG SOUTH	1	PANEL RM	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
98	BCAD BLDG SOUTH	1	ELEC RM	3	3	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.300	0.150
99	BCAD BLDG SOUTH	1	MDF	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
100	BCAD BLDG SOUTH	1	LAB	1	1	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.086	0.050
101	BCAD BLDG SOUTH	1	LAB	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
102	BCAD BLDG SOUTH	1	CONFRENCE #6	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
103	BCAD BLDG SOUTH	1	CONFRENCE #6	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
104	BCAD BLDG SOUTH	1	CONFRENCE #6	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
105	BCAD BLDG SOUTH	1	CLOSET	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
106	BCAD BLDG SOUTH	1	GENERAL AREA	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
107	BCAD BLDG SOUTH	1	GENERAL AREA	12	12	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.708	0.600
108	BCAD BLDG SOUTH	1	GREENBERG	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
109	BCAD BLDG SOUTH	1	HALL	11	11	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.649	0.550
110	BCAD BLDG SOUTH	1	ODESS	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
111	BCAD BLDG SOUTH	1	HOWLETT	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
112	BCAD BLDG SOUTH	1	SMITH	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
113	BCAD BLDG SOUTH	1	EQUIP RM	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
114	BCAD BLDG SOUTH	1	NETWORK	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
115	BCAD BLDG SOUTH	1	GENERAL AREA	12	12	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.708	0.600
116	BCAD BLDG SOUTH	1	SUPPLY RM	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
117	BCAD BLDG SOUTH	1	AUDIT FILE RM	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
118	BCAD BLDG SOUTH	1	BURNS	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
119	BCAD BLDG SOUTH	1	PENCE	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
120	BCAD BLDG SOUTH	1	PENCE	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
121	BCAD BLDG SOUTH	1	COMPUTER RM	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
122	BCAD BLDG SOUTH	1	COMPUTER RM	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
123	BCAD BLDG SOUTH	1	COMPUTER RM	5	5	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.295	0.250
124	BCAD BLDG SOUTH	1	FILE RM	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
125	BCAD BLDG SOUTH	1	CONFERENCE #8	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
126	BCAD BLDG SOUTH	1	CONFERENCE #8	4	4	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.344	0.200
127	BCAD BLDG SOUTH	1	LIBRARY	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
128	BCAD BLDG SOUTH	1	LIBRARY	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
129	BCAD BLDG SOUTH	1	IDF	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
130	BCAD BLDG SOUTH	1	GEN'L FILING	3	3	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.177	0.150
131	BCAD BLDG SOUTH	1	CLOSET	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
132	BCAD BLDG SOUTH	1	OPEN AREA	22	22	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.298	1.100
133	BCAD BLDG SOUTH	1	ENRIQUEZ	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
134	BCAD BLDG SOUTH	1	SCHUSTER	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
135	BCAD BLDG SOUTH	1	LEE	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
136	BCAD BLDG SOUTH	1	MALINOWSKI	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
137	BCAD BLDG SOUTH	1	STORAGE	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
138	BCAD BLDG SOUTH	1	RESTROOMS	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
139	BCAD BLDG SOUTH	1	RESTROOMS	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
140	BCAD BLDG SOUTH	1	SAMAR	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
141	BCAD BLDG SOUTH	1	DAVIDSON	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
142	BCAD BLDG SOUTH	1	ΟΤΤΟ	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
143	BCAD BLDG SOUTH	1	OPEN AREA	33	33	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.947	1.650
144	BCAD BLDG SOUTH	1	STORAGE	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050

RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
145	BCAD BLDG SOUTH	1	SPENNACCHIO	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
146	BCAD BLDG SOUTH	1	MASCARELL	2	2	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
147	BCAD BLDG SOUTH	1	NELSON	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
148	BCAD BLDG SOUTH	1	CONFERENCE #7	4	4	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.344	0.200
149	BCAD BLDG SOUTH	1	CONFERENCE #7	2	2	2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
150	BCAD BLDG SOUTH	1	OPEN AREA	8	8	2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.472	0.400
151	BCAD BLDG SOUTH	1	LAX	2	2	2X42T8	2X42T28	Y	6,750	2-F032T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
152	BCAD BLDG SOUTH	1	STORAGE	1	1	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.086	0.050
153	BCAD BLDG SOUTH	1	STACHURSKI	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
154	BCAD BLDG SOUTH	1	RESTROOMS	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
155	BCAD BLDG SOUTH	1	RESTROOMS	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
156	BCAD BLDG SOUTH	1	OPEN AREA	15	15	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.885	0.750
157	BCAD BLDG SOUTH	1	STORAGE	2	2	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.118	0.100
158	BCAD BLDG SOUTH	1	MEYER	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
159	BCAD BLDG SOUTH	1	CLOSET	1	1	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.059	0.050
160	BCAD BLDG SOUTH	1	IDF	1	1	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.100	0.050
161	BCAD BLDG SOUTH	1	FILE RM	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
162	BCAD BLDG SOUTH	1	PERSONNEL	1	1	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.086	0.050
163	BCAD BLDG SOUTH	1	CONFERENCE EXEC	2	2	2X44T8	2X42T28R	Y	6,750	4 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.200	0.100
164	BCAD BLDG SOUTH	1	CONFERENCE EXEC	4	4	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.344	0.200
165	BCAD BLDG SOUTH	1	HOUGHTON	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
166	BCAD BLDG SOUTH	1	BIELEK	4	4	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.344	0.200
167	BCAD BLDG SOUTH	1	JARGIELLO	4	4	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.344	0.200
168	BCAD BLDG SOUTH	1	OPEN AREA	14	14	2X42T8	2X42T28	Y	6,750	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.826	0.700
169	BCAD BLDG SOUTH	1	EXTERIOR	42	42	MH-100	42CFN	Ν	4,380	100 WATT METAL HALIDE/BALLAST	42WATT COMPACT FLUORESCENT NEW FIXTURE	5.670	1.890
170	CYRESS RCC	ALL	PARKING AREAS FIXT A	621	621	MH-400	NV-1X84T28	Ν	8,760	400 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	285.660	54.027
171	CYRESS RCC	ALL	PARKING AREAS FIXT B	4574	4574	MH-150	NV-1X42T28	N	8,760	150 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	891.930	228.700
172	CYRESS RCC	ALL	WALL-MOUNT FIXT V	12	12	MH-400	NR	N	8,760	400 WATT METAL HALIDE/BALLAST	NO RETROFIT	5.520	0.000
173	CYRESS RCC	ALL	WALL-MOUNT FIXT U	22	22	MH-150	NR	Ν	8,760	150 WATT METAL HALIDE/BALLAST	NO RETROFIT	4.290	0.000
174	CYRESS RCC	ALL	STAIRWELLS FIXT H	212	212	1X42T8	1X42T28	Ν	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	12.508	10.600
175	CYRESS RCC	9	POLE LIGHTS	180	180	MH-250	NR	Ν	4,380	250 WATT METAL HALIDE/BALLAST	NO RETROFIT	54.000	0.000
176	CYRESS RCC	ALL	MECHANICAL RMS	115	115	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	6.785	5.750
177	CYRESS RCC	ALL	MECHANICAL RMS	12	12	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	1.032	0.888
178	FACILITIES BLDG	1	OFFICES ETC	100	100	2X43T8	2X43T28	Y	6,750	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	8.600	7.400
179	FACILITIES BLDG	1	OFFICES ETC	57	57	MH-400	NV-1X84T28	Y	6,750	400 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	26.220	4.959
180	HIBISCUS GARAGE	1A	A1 - K2	20	20	HPS-400	NV-1X84T28	Ν	8,760	400 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	9.300	1.740
181	HIBISCUS GARAGE	1A	A1 - K2	72	72	HPS-150	NV-1X84T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.400	6.264
182	HIBISCUS GARAGE	1A	A2 - K3	64	64	HPS-150	NV-1X84T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	12.800	5.568
183	HIBISCUS GARAGE	1A	G2 - H3	16	16	2X43T8	2X43T28	Ν	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	1.376	1.184
184	HIBISCUS GARAGE	1A	A3 - K4	44	44	1X42T8	1X42T28	Ν	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.596	2.200
185	HIBISCUS GARAGE	1A	A3 - K4	16	16	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	3.200	1.392
186	HIBISCUS GARAGE	1A	A4 -K5	72	72	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.400	6.264
187	HIBISCUS GARAGE	1A	A5 - K6	72	72	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.400	6.264
188	HIBISCUS GARAGE	1A	A6 - K7	70	70	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.000	6.090
189	HIBISCUS GARAGE	1A	A7 - K8	70	70	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.000	6.090
190	HIBISCUS GARAGE	1A	A3 - K4	32	32	MH-250	MH-100PS	N	4,380	250 WATT METAL HALIDE/BALLAST	100 WATT PULSE START METAL HALIDE LAMP AND BALLAST	9.600	4.128
191	HIBISCUS GARAGE	1B	A8 - A9	70	70	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.000	6.090
192	HIBISCUS GARAGE	1B	A9 - K10	70	70	HPS-150	NV-1X84T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.000	6.090

RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
193	HIBISCUS GARAGE	1B	A10 - K11	68	68	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	13.600	5.916
194	HIBISCUS GARAGE	1B	A10 - B12	12	12	HPS-400	NV-1X84T28	N	8,760	400 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	5.580	1.044
195	HIBISCUS GARAGE	1B	A10 - B12	20	20	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	4.000	1.740
196	HIBISCUS GARAGE	1B	A11 - K12	68	68	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	13.600	5.916
197	HIBISCUS GARAGE	1B	A12 - K13	24	24	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	4.800	2.088
198	HIBISCUS GARAGE	1B	A12 - K13	44	44	1X42T8	1X42T28	N	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.596	2.200
199	HIBISCUS GARAGE	1B	A12 - K13	32	32	MH-250	MH-100PS	N	4,380	250 WATT METAL HALIDE/BALLAST	100 WATT PULSE START METAL HALIDE LAMP AND BALLAST	9.600	4.128
200	HIBISCUS GARAGE	1B	A13 - K14	58	58	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	11.600	5.046
201	HIBISCUS GARAGE	1B	A13 - K14	16	16	HPS-400	NV-1X84T28	N	8,760	400 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	7.440	1.392
202	HIBISCUS GARAGE	1B	A13 - K14	12	12	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.400	0.600
203	HIBISCUS GARAGE	1B	A14 - K15	24	24	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	4.800	2.088
204	HIBISCUS GARAGE	1B	A14 - K15	12	12	HPS-400	NV-1X84T28	N	8,760	400 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	5.580	1.044
205	HIBISCUS GARAGE	1B	A14 - K15	12	12	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.400	0.600
206	HIBISCUS GARAGE	1B	A14 - K15	6	6	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	1.200	0.522
207	HIBISCUS GARAGE	2A	A1 - K2	50	50	MH-200	NV-1X84T28	N	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	13.500	4.350
208	HIBISCUS GARAGE	2A	A1 - K2	8	8	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	1.600	0.696
209	HIBISCUS GARAGE	2A	A1 - K2	6	6	MH-200	NV-1X84T28	N	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	1.620	0.522
210	HIBISCUS GARAGE	2A	A2 - K3	54	54	MH-200	NV-1X84T28	N	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.580	4.698
211	HIBISCUS GARAGE	2A	A3 - K4	44	44	1X42T8	1X42T28	N	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.596	2.200
212	HIBISCUS GARAGE	2A	A3 - K4	22	22	MH-200	NV-1X84T28	Ν	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	5.940	1.914
213	HIBISCUS GARAGE	2A	A4 - K5	54	54	MH-200	NV-1X84T28	Ν	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.580	4.698
214	HIBISCUS GARAGE	2A	A5 - K6	54	54	MH-200	NV-1X84T28	Ν	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.580	4.698
215	HIBISCUS GARAGE	2A	A6 - K7	52	52	MH-200	NV-1X84T28	Ν	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.040	4.524
216	HIBISCUS GARAGE	2A	A7 - K8	52	52	MH-200	NV-1X84T28	Ν	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.040	4.524
217	HIBISCUS GARAGE	2A	ALL FLOORS	20	20	HPS-150	NV-1X84T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	4.000	1.740
218	HIBISCUS GARAGE	2A	A8 - K9	52	52	MH-200	NV-1X84T28	N	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.040	4.524
219	HIBISCUS GARAGE	2B	A8 - K9	52	52	MH-200	NV-1X84T28	N	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.040	4.524
220	HIBISCUS GARAGE	2B	ALL FLOORS	20	20	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	4.000	1.740
221	HIBISCUS GARAGE	2B	A9 - K10	52	52	MH-200	NV-1X84T28	N	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.040	4.524
222	HIBISCUS GARAGE	2B	A11 - K11	54	54	MH-200	NV-1X84T28	Ν	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.580	4.698
223	HIBISCUS GARAGE	2B	A11 - K12	54	54	MH-200	NV-1X84T28	Ν	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	14.580	4.698
224	HIBISCUS GARAGE	2B	A12 - K13	44	44	1X42T8	1X42T28	Ν	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.596	2.200
225	HIBISCUS GARAGE	2B	A12 - K13	22	22	MH-200	NV-1X84T28	Ν	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	5.940	1.914
226	HIBISCUS GARAGE	2B	A13 - K14	30	30	MH-200	NV-1X84T28	Ν	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	8.100	2.610
227	HIBISCUS GARAGE	2B	A13 - K14	16	16	MH-200	NV-1X84T28	Ν	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	4.320	1.392
228	HIBISCUS GARAGE	2B	A13 - K14	8	8	HPS-150	NV-1X84T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	1.600	0.696
229	HIBISCUS GARAGE	2B	A13 - K14	12	12	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.400	0.600
230	HIBISCUS GARAGE	2B	A14 - K15	6	6	MH-200	NV-1X84T28	Ν	8,760	200 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	1.620	0.522
231	HIBISCUS GARAGE	2B	A14 - K15	17	17	HPS-100	NR	Ν	4,380	100 HIGH PRESSURE SODIUM/BALLAST	NO RETROFIT	2.295	2.295
232	HIBISCUS GARAGE	2B	A14 - K15	12	12	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.400	0.600
233	HIBISCUS GARAGE	2B	A14 - K15	8	8	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.600	0.400
234	HIBISCUS GARAGE	3A	A1 - K2	8	8	HPS-400	NV-1X84T28	Ν	8,760	400 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	3.720	0.696
235	HIBISCUS GARAGE	3A	A1 - K12	51	51	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	10.200	2.550
236	HIBISCUS GARAGE	3A	A2 - K3	58	58	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	11.600	2.900
237	HIBISCUS GARAGE	3A	A1 - K2	4	4	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	0.800	0.348
238	HIBISCUS GARAGE	3A	A3 - K4	16	16	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	3.200	0.800
239	HIBISCUS GARAGE	3A	A4 - K4	44	44	1X42T8	1X42T28	Ν	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.596	2.200
240	HIBISCUS GARAGE	3A	A4 - K5	58	58	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	11.600	2.900

RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
241	HIBISCUS GARAGE	3A	A5 - K6	59	59	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	11.800	2.950
242	HIBISCUS GARAGE	3A	A6 - K7	57	57	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	11.400	2.850
243	HIBISCUS GARAGE	3A	A7 - K8	58	58	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	11.600	2.900
244	HIBISCUS GARAGE	3B	A8 - K9	57	57	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	11.400	2.850
245	HIBISCUS GARAGE	3B	A9 - K10	57	57	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	11.400	2.850
246	HIBISCUS GARAGE	3B	A10 - K11	59	59	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	11.800	2.950
247	HIBISCUS GARAGE	3B	A11 - K12	59	59	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	11.800	2.950
248	HIBISCUS GARAGE	3B	A12 - K13	16	16	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	3.200	0.800
249	HIBISCUS GARAGE	3B	A12 - K13	44	44	1X42T8	1X42T28	Ν	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.596	2.200
250	HIBISCUS GARAGE	3B	A13 - K14	49	49	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	9.800	2.450
251	HIBISCUS GARAGE	3B	A13 - K14	12	12	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.400	0.600
252	HIBISCUS GARAGE	3B	A14 - K15	16	16	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	3.200	0.800
253	HIBISCUS GARAGE	3B	A14 - K15	12	12	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.400	0.600
254	HIBISCUS GARAGE	4,5A	A1 - A2	120	120	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	24.000	6.000
255	HIBISCUS GARAGE	4,5A	A2 - A3	116	116	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	23.200	5.800
256	HIBISCUS GARAGE	4,5A	A3 -A4	16	16	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	3.200	0.800
257	HIBISCUS GARAGE	4,5A	A3 -A4	44	44	1X42T8	1X42T28	Ν	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.596	2.200
258	HIBISCUS GARAGE	4,5A	A4 -A5	118	118	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	23.600	5.900
259	HIBISCUS GARAGE	4,5A	A5 -A6	118	118	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	23.600	5.900
260	HIBISCUS GARAGE	4,5A	A6 -A7	114	114	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	22.800	5.700
261	HIBISCUS GARAGE	4,5A	A7 -A8	114	114	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	22.800	5.700
262	HIBISCUS GARAGE	4,5B	A8 - A9	114	114	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	22.800	5.700
263	HIBISCUS GARAGE	4,5B	A9 - A10	114	114	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	22.800	5.700
264	HIBISCUS GARAGE	4,5B	A10 - A11	118	118	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	23.600	5.900
265	HIBISCUS GARAGE	4,5B	A11 - A12	118	118	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	23.600	5.900
266	HIBISCUS GARAGE	4,5B	A12 - A13	16	16	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	3.200	0.800
267	HIBISCUS GARAGE	4,5B	A12 - A13	44	44	1X42T8	1X42T28	Ν	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.596	2.200
268	HIBISCUS GARAGE	4,5B	A13 - A14	98	98	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	19.600	4.900
269	HIBISCUS GARAGE	4,5B	A13 - A14	24	24	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	4.800	1.200
270	HIBISCUS GARAGE	4,5B	A14 - A15	32	32	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	6.400	1.600
271	HIBISCUS GARAGE	4,5B	A14 - A15	24	24	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	4.800	1.200
272	HIBISCUS GARAGE	6A	A1 - K8	24	24	HPS-250	NR	Ν	4,380	250 HIGH PRESSURE SODIUM/BALLAST	NO RETROFIT	7.440	7.440
273	HIBISCUS GARAGE	6A	A1 - K2	54	54	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	10.800	2.700
274	HIBISCUS GARAGE	6A	A2 - K3	54	54	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	10.800	2.700
275	HIBISCUS GARAGE	6A	A3 - K4	8	8	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.600	0.400
276	HIBISCUS GARAGE	6A	A4 - K5	54	54	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	10.800	2.700
277	HIBISCUS GARAGE	6A	A5 - K6	54	54	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	10.800	2.700
278	HIBISCUS GARAGE	6A	A6 - K7	52	52	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	10.400	2.600
279	HIBISCUS GARAGE	6A	A7 - K8	52	52	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	10.400	2.600
280	HIBISCUS GARAGE	6B	A8 - K15	22	22	HPS-250	NR	Ν	4,380	250 HIGH PRESSURE SODIUM/BALLAST	NO RETROFIT	6.820	6.820
281	HIBISCUS GARAGE	6B	A8 - K9	52	52	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	10.400	2.600
282	HIBISCUS GARAGE	6B	A9 - K10	52	52	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	10.400	2.600
283	HIBISCUS GARAGE	6B	A10 - K11	54	54	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	10.800	2.700
284	HIBISCUS GARAGE	6B	A11 - K12	54	54	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	10.800	2.700
285	HIBISCUS GARAGE	6B	A12 - K13	16	16	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	3.200	0.800
286	HIBISCUS GARAGE	6B	A12 - K13	44	44	1X42T8	1X42T28	N	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.596	2.200
287	HIBISCUS GARAGE	6B	A13 - K14	44	44	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	8.800	2.200
288	HIBISCUS GARAGE	6B	A13 - K14	12	12	HPS-150	NV-1X42T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.400	0.600

RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
289	HIBISCUS GARAGE	6B	A14 - K15	12	12	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.400	0.600
290	HIBISCUS GARAGE	6B	A14 - K15	14	14	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.800	0.700
291	HIBISCUS GARAGE	ALL	STAIRWELLS	142	142	1X42T8	1X42T28	N	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	8.378	7.100
292	HIBISCUS GARAGE	ALL	EXIT SIGNS	252	252	ELED	NR	N	8,760	LED EXIT SIGN	NO RETROFIT	1.008	0.000
293	PALM GARAGE	1N	THROUGHOUT	141	141	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	28.200	12.267
294	PALM GARAGE	1S	THROUGHOUT	146	146	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	29.200	12.702
295	PALM GARAGE	1N	THROUGHOUT	22	22	MH-250	NV-1X84T28	N	8,760	250 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	6.600	1.914
296	PALM GARAGE	1S	THROUGHOUT	20	20	MH-250	NV-1X84T28	N	8,760	250 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	6.000	1.740
297	PALM GARAGE	2N	THROUGHOUT	135	135	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	27.000	11.745
298	PALM GARAGE	2S	THROUGHOUT	136	136	HPS-150	NV-1X84T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	27.200	11.832
299	PALM GARAGE	3N	THROUGHOUT	123	123	HPS-150	NV-1X84T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	24.600	10.701
300	PALM GARAGE	3S	THROUGHOUT	124	124	HPS-150	NV-1X84T28	Ν	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	24.800	10.788
301	PALM GARAGE	ALL	THROUGHOUT	16	16	E2.20	NF-ELED	N	8,760	EXIT -(2) 20 WATT INCANDESCENT SCREW IN	EXIT - (2) 2 WATT LED HARDWIRE - NEW FIXTURE	0.640	0.064
302	TERMINAL 1	2	CONCOURSES	368	368	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	21.712	18.400
303	TERMINAL 1	2	CONCOURSES	70	70	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	6.020	5.180
304	TERMINAL 1	2	CONCOURSES	64	64	MH-175	NV-1X84T28	Y	8,760	175 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	13.440	5.568
305	TERMINAL 1	2	CONCOURSES	275	275	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	16.225	13.750
306	TERMINAL 1	2	CONCOURSES	21	21	MH-400	MH-300PS	Y	8,760	400 WATT METAL HALIDE/BALLAST	300 WATT PULSE START METAL HALIDE LAMP AND BALLAST	9.660	6.825
307	TERMINAL 1	1	AREA F	100	100	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	5.900	5.000
308	TERMINAL 1	1	AREA H	100	100	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	5.900	5.000
309	TERMINAL 1	2	AREA A	142	142	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	8.378	7.100
310	TERMINAL 1	2	AREA B	95	95	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	5.605	4.750
311	TERMINAL 1	2	AREA C	35	35	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.065	1.750
312	TERMINAL 1	1	AREA J	14	14	MH-175	NV-1X84T28	Y	8,760	175 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	2.940	1.218
313	TERMINAL 1	1	AREA K	9	9	MH-175	NV-1X84T28	Y	8,760	175 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	1.890	0.783
314	TERMINAL 1	2	AREA B	3	3	MH-175	NV-1X84T28	Y	8,760	175 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	0.630	0.261
315	TERMINAL 1	2	AREA C	2	2	MH-175	NV-1X84T28	Y	8,760	175 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	0.420	0.174
316	TERMINAL 1	1	AREA J	55	55	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	3.245	2.750
317	TERMINAL 1	2	AREA B	18	18	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.062	0.900
318	TERMINAL 1	2	AREA C	16	16	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.944	0.800
319	TERMINAL 1	2	AREA F	45	45	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.655	2.250
320	TERMINAL 1	2	AREA H	45	45	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.655	2.250
321	TERMINAL 1	2	AREA J	21	21	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.239	1.050
322	TERMINAL 1	2-2.5	AREA D&K	21	21	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.239	1.050
323	TERMINAL 1	3	AREA C	13	13	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.767	0.650
324	TERMINAL 1	3	AREA F	15	15	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.885	0.750
325	TERMINAL 1	3	AREA H	15	15	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.885	0.750
326	TERMINAL 1	3	AREA J	12	12	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.708	0.600
327	TERMINAL 1	2	AREAS E,G,F,H,J	106	106	MH-400	MH-300PS	Y	8,760	400 WATT METAL HALIDE/BALLAST	300 WATT PULSE START METAL HALIDE LAMP AND BALLAST	48.760	34.450
328	TERMINAL 1	2	AREAS F,H	4	4	MH-175	NV-1X84T28	Y	8,760	175 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	0.840	0.348
329	TERMINAL 1	2	AREAS F,H	46	46	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.714	2.300
330	TERMINAL 1	2	AREAS F,H	100	100	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	5.900	5.000
331	TERMINAL 1	2	AREA J	4	4	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	0.344	0.296
332	TERMINAL 1	3	AREA C	8	8	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	0.688	0.592
333	TERMINAL 1	3	AREA J	9	9	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	0.774	0.666
334	TERMINAL 1	3	AREAS A,B,C,J	69	69	MH-400	MH-300PS	Y	8,760	400 WATT METAL HALIDE/BALLAST	300 WATT PULSE START METAL HALIDE LAMP AND BALLAST	31.740	22.425
335	TERMINAL 1	4	AREAS C,F,H,J	99	99	MH-400	MH-300PS	Y	8,760	400 WATT METAL HALIDE/BALLAST	300 WATT PULSE START METAL HALIDE LAMP AND BALLAST	45.540	32.175
336	TERMINAL 1 ENPLANE	2	UNDER CANOPY	132	66	MH-100	NV-1X84T28	Ν	8,760	100 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	17.820	5.742

RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
337	TERMINAL 1 ENPLANE	2	UNDER CANOPY	66	66	MH-250	2.42CFH	N	8,760	250 WATT METAL HALIDE/BALLAST	2X42WATT COMPACT FLUORESCENT HARDWIRE RETROFIT KIT	19.800	6.864
338	TERMINAL 2	1	ENTRANCE FOYER	24	24	1X13T8U3	NR	Y	8,760	1X1 3-16W U-TUBE	NO RETROFIT	1.152	1.152
339	TERMINAL 2	1	ENTRANCE FOYER	8	8	2X22T8U6	NR	Y	8,760	2-FO32T8U - ELECTRONIC	NO RETROFIT	0.472	0.472
340	TERMINAL 2	1	FRONT WALL	16	16	1X13T8U3	NR	Y	8,760	1X1 3-16W U-TUBE	NO RETROFIT	0.768	0.768
341	TERMINAL 2	1	ENTRANCES	128	128	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	7.552	6.400
342	TERMINAL 2	1	BAGGAGE CLAIM	209	209	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	17.974	15.466
343	TERMINAL 2	1	ABOVE CAROUSELS	72	72	2X22T8U6	NR	Y	8,760	2-FO32T8U - ELECTRONIC	NO RETROFIT	4.248	4.248
344	TERMINAL 2	1	BATHROOMS	40	40	1X13T8U3	NR	Y	8,760	1X1 3-16W U-TUBE	NO RETROFIT	1.920	1.920
345	TERMINAL 2	1	BATHROOMS	20	20	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.180	1.000
346	TERMINAL 2	2	BATHROOMS	40	40	1X13T8U3	NR	Y	8,760	1X1 3-16W U-TUBE	NO RETROFIT	1.920	1.920
347	TERMINAL 2	2	BATHROOMS	20	20	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.180	1.000
348	TERMINAL 2	2	ABOVE ESCALATORS	36	36	2X22T8U6	NR	Y	8,760	2-FO32T8U - ELECTRONIC	NO RETROFIT	2.124	2.124
349	TERMINAL 2	2	ENTRANCE FOYER	24	24	1X13T8U3	NR	Y	8,760	1X1 3-16W U-TUBE	NO RETROFIT	1.152	1.152
350	TERMINAL 2	2	ENTRANCE FOYER	8	8	2X22T8U6	NR	Y	8,760	2-FO32T8U - ELECTRONIC	NO RETROFIT	0.472	0.472
351	TERMINAL 2	2	GENERAL AREA	178	178	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	15.308	13.172
352	TERMINAL 2	2	SECURITY ENTRANCE	18	18	1X13T8U3	NR	Y	8,760	1X1 3-16W U-TUBE	NO RETROFIT	0.864	0.864
353	TERMINAL 2	2	ABOVE TICKET COUNTERS	39	39	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.301	1.950
354	TERMINAL 2	2	BEHIND TICKET COUNTERS	37	37	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.183	1.850
355	TERMINAL 2	3	GARAGE ENTRANCES	6	6	MV-100	2.22CFN	Ν	8,760	100 WATT MERCURY VAPOR/BALLAST	(2) 22 WATT COMPACT FLUORESCENT NEW FIXTURE	0.762	0.312
356	TERMINAL 2	3	ELEVATORS	3	3	1X42SS	1X42T28	Y	8,760	2 -F40T12 STD LAMP-STD BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.273	0.150
357	TERMINAL 2	3	ELEVATORS	6	6	1X22SS	1X22T8L	Y	8,760	2 -F20T12-STD LAMP-STD BALLAST	2 -F017T8-ELECTRONIC LOW POWER	0.288	0.150
358	TERMINAL 2	3	EXITS	2	2	E2.20	NF-ELED	Y	8,760	EXIT -(2) 20 WATT INCANDESCENT SCREW IN	EXIT - (2) 2 WATT LED HARDWIRE - NEW FIXTURE	0.080	0.008
359	TERMINAL 2	3	STAIRS	4	4	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.276	0.200
360	TERMINAL 2	1	ABOVE SIDEWALK	11	11	HPS-200	NV-1X84T28	N	8,760	200 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	2.695	0.957
361	TERMINAL 2	1	DELTA BAGGAGE	14	14	2X43EE	2X42T8R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2 -F032 T8-ELECTRONIC-2x4 REFLECTOR	1.442	0.826
362	TERMINAL 2	1	DELTA OFFICE	2	2	2X43EE	2X42T8R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2 -F032 T8-ELECTRONIC-2x4 REFLECTOR	0.206	0.118
363	TERMINAL 2	1	REAR DELTA	3	3	2X43EE	2X42T8R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2 -F032 T8-ELECTRONIC-2x4 REFLECTOR	0.309	0.177
364	TERMINAL 2	1	BREAK RM	3	3	2X43EE	2X42T8R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2 -F032 T8-ELECTRONIC-2x4 REFLECTOR	0.309	0.177
365	TERMINAL 2	1	TV RM	2	2	2X43EE	2X42T8R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2 -F032 T8-ELECTRONIC-2x4 REFLECTOR	0.206	0.118
366	TERMINAL 2	2	TORTOGA	11	11	2X22UEE	2X22T8U6	Y	6,750	2 -F40T12 U TUBE-ES LAMP-ES BALLAST	2 - F32T8 -6" U- TUBE - ELECTRONIC	0.792	0.649
367	TERMINAL 2	2	TORTOGA	9	9	75R30	15CFR	Y	6,750	INCANDESCENT PAR - 75 WATT R30	15 WATT COMPACT FLUORESCENT NEW FIXTURE	0.675	0.135
368	TERMINAL 2	2	TORTOGA	3	3	2X44EE	2X42T28R	Y	6,750	4 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.414	0.150
369	TERMINAL 2	2	GIFT & NEWS NO.	10	10	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.690	0.500
370	TERMINAL 2	2	GIFT & NEWS NO.	3	3	1X32SS	1X32T8L	Y	6,750	2 -F30-T12-STD LAMP-STD BALLAST	2 -F025T8- LOW POWER	0.213	0.111
371	TERMINAL 2	2	GIFT & NEWS NO.	2	2	1X22SS	1X22T8L	Y	6,750	2 -F20T12-STD LAMP-STD BALLAST	2 -F017T8-ELECTRONIC LOW POWER	0.096	0.050
372	TERMINAL 2	2	ICE CREAM SHOP	18	18	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.242	0.900
373	TERMINAL 2	2	ICE CREAM SHOP	2	2	2X44EE	2X42T28R	Y	6,750	4 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.276	0.100
374	TERMINAL 2	2	COFFEE SHOP	9	9	2X22UEE	2X22T8U6	Y	6,750	2 -F40T12 U TUBE-ES LAMP-ES BALLAST	2 - F32T8 -6" U- TUBE - ELECTRONIC	0.648	0.531
375	TERMINAL 2	2	COFFEE SHOP	2	2	2X44EE	2X42T28R	Y	6,750	4 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.276	0.100
376	TERMINAL 2	2	GIFT & NEWS SO.	3	3	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.207	0.150
377	TERMINAL 2	2	GIFT & NEWS SO.	13	13	1X32SS	1X32T8L	Y	6,750	2 -F30-T12-STD LAMP-STD BALLAST	2 -F025T8- LOW POWER	0.923	0.481
378	TERMINAL 2	2	GIFT & NEWS SO.	3	3	1X22SS	1X22T8L	Y	6,750	2 -F20T12-STD LAMP-STD BALLAST	2 -F017T8-ELECTRONIC LOW POWER	0.144	0.075
379	TERMINAL 2	2	BEHIND TICKET HALL	3	3	2X22UEE	2X22T8U6	Y	8,760	2 -F40T12 U TUBE-ES LAMP-ES BALLAST	2 - F32T8 -6" U- TUBE - ELECTRONIC	0.216	0.177
380	TERMINAL 2	2	STORAGE	4	4	2X44EE	2X42T28R	Y	6,750	4 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.552	0.200
381	TERMINAL 2	2	FILE ROOM	3	3	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.207	0.150
382	TERMINAL 2	2	STAIRS	2	2	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.138	0.100
383	TERMINAL 2	2	LOCKER RM	4	4	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.276	0.200
384	TERMINAL 2	2	HALL	5	5	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.515	0.250

RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
385	TERMINAL 2	2	LEAD AGENT OFFICE	2	2	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.206	0.100
386	TERMINAL 2	2	COUNTER CONTROL	3	3	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.309	0.150
387	TERMINAL 2	2	CASHIER	4	4	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.412	0.200
388	TERMINAL 2	2	LEAD AGENT OFFICE	2	2	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.206	0.100
389	TERMINAL 2	2	TELCO COMM	2	2	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.206	0.100
390	TERMINAL 2	2	ELEC RM	1	1	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.069	0.050
391	TERMINAL 2	2	JANITOR RM	1	1	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.069	0.050
392	TERMINAL 2	2	BREAK RM	4	4	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.412	0.200
393	TERMINAL 2	2	RESTROOMS	6	6	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.414	0.300
394	TERMINAL 2	2	HALL	3	3	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.309	0.150
395	TERMINAL 2	2	ATA OFFICE	2	2	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.206	0.100
396	TERMINAL 2	2	MAIN OFFICE	7	7	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.721	0.350
397	TERMINAL 2	2	US VISIT	2	2	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.206	0.100
398	TERMINAL 2	2	HALL	3	3	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.309	0.150
399	TERMINAL 2	2	LA CUCINA	4	4	2X22UEE	2X22T8U6	Y	6,750	2 -F40T12 U TUBE-ES LAMP-ES BALLAST	2 - F32T8 -6" U- TUBE - ELECTRONIC	0.288	0.236
400	TERMINAL 2	2	LA CUCINA	18	18	75R30	15CFS	Y	6,750	INCANDESCENT PAR - 75 WATT R30	15 WATT COMPACT FLUOR. SCREW IN- PHILLIPS SLS	1.350	0.342
401	TERMINAL 2	2	LA CUCINA KITCHEN	4	4	2X22UEE	2X22T8U6	Y	6,750	2 -F40T12 U TUBE-ES LAMP-ES BALLAST	2 - F32T8 -6" U- TUBE - ELECTRONIC	0.288	0.236
402	TERMINAL 2	2	LA CUCINA SERVICE	2	2	2X44EE	2X42T28R	Y	6,750	4 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.276	0.100
403	TERMINAL 2	2	LA CUCINA BAR	10	10	75A	15CFD	Y	6,750	INCANDESCENT "A" LAMPS - 75 WATT	15 WATT COMPACT FLUOR. DIMMABLE	0.750	0.190
404	TERMINAL 2	2	PGA TOUR	9	9	1X32T8	NR	Y	6,750	2X25WATT 3' T8 ELECTRONIC	NO RETROFIT	0.369	0.369
405	TERMINAL 2	2	NEWS STAND	14	14	1X32T8	NR	Y	6,750	2X25WATT 3' T8 ELECTRONIC	NO RETROFIT	0.574	0.574
406	TERMINAL 2	2	MIAMI SUBS	2	2	2X43T8	2X43T28	Y	6,750	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	0.172	0.148
407	TERMINAL 2	2	KITCHEN ABOVE	19	19	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	1.957	0.950
408	TERMINAL 2	2	REAR HALL	5	5	MV-100	2.22CFN	Y	6,750	100 WATT MERCURY VAPOR/BALLAST	(2) 22 WATT COMPACT FLUORESCENT NEW FIXTURE	0.635	0.260
409	TERMINAL 2	2	OFFICE MIAMI SUBS	3	3	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.309	0.150
410	TERMINAL 2	2	BREAK RM	3	3	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.309	0.150
411	TERMINAL 2	2	ELEC RM	1	1	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.103	0.050
412	TERMINAL 2	2	KITCHEN ABOVE	4	4	2X22UEE	2X22T8U6	Y	8,760	2 -F40T12 U TUBE-ES LAMP-ES BALLAST	2 - F32T8 -6" U- TUBE - ELECTRONIC	0.288	0.236
413	TERMINAL 2	2	CONCOURSE D	292	292	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	25.112	21.608
414	TERMINAL 2	2	CONCOURSE D	100	100	2X22T8U6	NR	Y	8,760	2-FO32T8U - ELECTRONIC	NO RETROFIT	5.900	5.900
415	TERMINAL 2	2	ABOVE SECURITY	10	10	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	0.860	0.740
416	TERMINAL 2	2	ABOVE SECURITY	12	12	2X22T8U6	NR	Y	8,760	2-FO32T8U - ELECTRONIC	NO RETROFIT	0.708	0.708
417	TERMINAL 2	1	BAGS TO GO OFFICE	4	4	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.276	0.200
418	TERMINAL 2	1	UNDER CONCOURSE D	148	148	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	15.244	7.400
419	TERMINAL 2	1	UNDER CONCOURSE D	225	225	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	23.175	11.250
420	TERMINAL 2	1	UNDER CONCOURSE D	640	640	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	65.920	32.000
421	TERMINAL 2	1	UNDER CONCOURSE D	30	30	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	3.090	1.500
422	TERMINAL 2	1	UNDER CONCOURSE D	60	60	1X82SS	1X824T28RKIT	N	8,760	2 -F96T12-STD LAMP-STD BALLAST	1X8 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFL KIT	9.840	2.640
423	TERMINAL 2	1	UNDER CONCOURSE D	40	40	1X81SS	1X81T8	N	8,760	1 -F96T12-STD LAMP-STD BALLAST	1-F96T8-ELECTRONIC-8'-T8 LAMP	3.560	1.960
424	TERMINAL 2	1	UNDER CONCOURSE D	86	86	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	5.934	4.300
425	TERMINAL 2	1	UNDER CONCOURSE D	94	94	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	18.800	8.178
426	TERMINAL 2	1	STAIRWELLS TERM 2	24	24	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.656	1.200
427	TERMINAL 3	2	TICKET AREA	219	219	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	18.834	16.206
428	TERMINAL 3	1-2	TICKET/BAGGAGE CLAIM	320	320	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	18.880	16.000
429	TERMINAL 3	2	TICKET COUNTERS-TROFFER	90	90	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	5.310	4.500
430	TERMINAL 3	2	TICKET COUNTERS-PENDANT	124	124	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	7.316	6.200
431	TERMINAL 3	2	CENTER AREAS	40	40	2X22T8U6	NR	Y	8,760	2-FO32T8U - ELECTRONIC	NO RETROFIT	2.360	2.400
432	TERMINAL 3	2	CENTER AREAS	55	55	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	4.730	4.070

RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
433	TERMINAL 3	2	SITTING AREAS	25	25	MV-100	2.22CFN	Y	8,760	100 WATT MERCURY VAPOR/BALLAST	(2) 22 WATT COMPACT FLUORESCENT NEW FIXTURE	3.175	1.300
434	TERMINAL 3	2	REAR CORRIDOR	165	165	MV-100	2.22CFN	Y	8,760	100 WATT MERCURY VAPOR/BALLAST	(2) 22 WATT COMPACT FLUORESCENT NEW FIXTURE	20.955	8.580
435	TERMINAL 3	1-2	ENTRANCE LOBBIES	60	60	1X13T8U3	NR	Y	8,760	1X1 3-16W U-TUBE	NO RETROFIT	2.880	2.880
436	TERMINAL 3	1-2	ENTRANCE LOBBIES	20	20	2X22T8U6	NR	Y	8,760	2-FO32T8U - ELECTRONIC	NO RETROFIT	1.180	1.180
437	TERMINAL 3	2	WALL FACING WINDOWS	45	45	1X2BIAX40	NR	Y	8,760	40-WATT CFL BIAX	NO RETROFIT	1.800	1.800
438	TERMINAL 3	2	DISPLAY CASES	36	36	1X42EE	1X42T28L	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP LP ELECTRONIC BALLAST	2.484	1.584
439	TERMINAL 3	2	RESTROOMS	20	20	1X13T8U3	NR	Y	8,760	1X1 3-16W U-TUBE	NO RETROFIT	0.960	0.960
440	TERMINAL 3	2	RESTROOMS	16	16	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.944	0.800
441	TERMINAL 3	2	EXIT SIGNS	4	4	E2.20	NF-ELED	Y	8,760	EXIT -(2) 20 WATT INCANDESCENT SCREW IN	EXIT - (2) 2 WATT LED HARDWIRE - NEW FIXTURE	0.160	0.016
442	TERMINAL 3	2	DECORATIVE GLOBES	18	18	13CFL	NR	Y	8,760	13-WATT COMPACT FLUORESCENT	NO RETROFIT	0.306	0.000
443	TERMINAL 3	1-2	ELEVATORS	4	4	1X22SS	1X22T8L	Y	8,760	2 -F20T12-STD LAMP-STD BALLAST	2 -F017T8-ELECTRONIC LOW POWER	0.192	0.100
444	TERMINAL 3	1-2	ELEVATORS	2	2	1X42SS	1X42T28L	Y	8,760	2 -F40T12 STD LAMP-STD BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP LP ELECTRONIC BALLAST	0.182	0.088
445	TERMINAL 3	1-2	ELEVATOR LOBBIES	8	8	MV-100	2.22CFN	Y	8,760	100 WATT MERCURY VAPOR/BALLAST	(2) 22 WATT COMPACT FLUORESCENT NEW FIXTURE	1.016	0.416
446	TERMINAL 3	1	BAGGAGE CLAIM	363	363	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	31.218	26.862
447	TERMINAL 3	1	BAGGAGE CLAIM	96	96	2X22T8U6	NR	Y	8,760	2-FO32T8U - ELECTRONIC	NO RETROFIT	5.664	5.664
448	TERMINAL 3	1	RESTROOMS	16	16	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.944	0.800
449	TERMINAL 3	1	RESTROOMS	28	28	1X13T8U3	NR	Y	8,760	1X1 3-16W U-TUBE	NO RETROFIT	1.344	1.344
450	TERMINAL 3	1	ABOVE WINDOWS	31	31	1X13T8U3	NR	Y	8,760	1X1 3-16W U-TUBE	NO RETROFIT	1.488	1.488
451	TERMINAL 3	1	REAR OF TICKET CTRS SO	220	220	2X44EE	2X42T28R	Y	8,760	4 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	30.360	11.000
452	TERMINAL 3	2	REAR OF TICKET CTRS NO	220	220	2X44EE	2X42T28R	Y	8,760	4 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	30.360	11.000
453	TERMINAL 3	2	FLLIGHT DECK	100	100	75A	15CFS	Y	8,760	INCANDESCENT "A" LAMPS - 75 WATT	15 WATT COMPACT FLUOR. SCREW IN- PHILLIPS SLS	7.500	1.900
454	TERMINAL 3	2	NEWS STAND	20	20	70HA20	18CFR	Y	6,750	70 WATT HALOGEN PAR 20 LAMP	18 WATT COMPACT FLUORESCENT FLOOD REFLECTOR	1.400	0.440
455	TERMINAL 3	2	NEWS STAND	19	19	1X32SS	1X32T8L	Y	6,750	2 -F30-T12-STD LAMP-STD BALLAST	2 -F025T8- LOW POWER	1.349	0.703
456	TERMINAL 3	2	TROPICAL TREATS	15	15	2X22UEE	2X22T8U6	Y	6,750	2 -F40T12 U TUBE-ES LAMP-ES BALLAST	2 - F32T8 -6" U- TUBE - ELECTRONIC	1.080	0.885
457	TERMINAL 3	2	TROPICAL TREATS	6	6	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.414	0.300
458	TERMINAL 3	2	TROPICAL TREATS	3	3	1X32SS	1X32T8L	Y	6,750	2 -F30-T12-STD LAMP-STD BALLAST	2 -F025T8- LOW POWER	0.213	0.111
459	TERMINAL 3	2	CHILI'S	225	225	75R30	18CFR	Y	6,750	INCANDESCENT PAR - 75 WATT R30	18 WATT COMPACT FLUORESCENT FLOOD REFLECTOR	16.875	4.950
460	TERMINAL 3	2	CHILI'S KITCHEN	50	50	2X43EE	2X43T28	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	5.150	3.700
461	TERMINAL 3	2	TSA LOUNGE	34	34	2X43T8	2X43T28	Y	6,750	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	2.924	2.516
462	TERMINAL 3	2	EDY'S	11	11	MV-100	2.22CFN	Y	6,750	100 WATT MERCURY VAPOR/BALLAST	(2) 22 WATT COMPACT FLUORESCENT NEW FIXTURE	1.397	0.572
463	TERMINAL 3	2	EDY'S	10	10	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.690	0.500
464	TERMINAL 3	2	EDY'S REAR	2	2	2X44EE	2X42T28R	Y	6,750	4 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.276	0.100
465	TERMINAL 3	2	EDY'S	5	5	75A	15CFS	Y	6,750	INCANDESCENT "A" LAMPS - 75 WATT	15 WATT COMPACT FLUOR. SCREW IN- PHILLIPS SLS	0.375	0.095
466	TERMINAL 3	2	SIDA CONFERENCE AREA	24	24	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	2.472	1.200
467	TERMINAL 3	2	PGA SHOP	7	7	1X42T8	1X42T28	Y	6,750	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.413	0.350
468	TERMINAL 3	2	SECURITY AREA TO F	84	84	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	4.956	4.200
469	TERMINAL 3	2	HALL TO F	96	96	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	5.664	4.800
470	TERMINAL 3	2	GATE AREA F1-F10	30	30	1X41T8	1X41T28	Y	8,760	1X4 1-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.900	0.780
471	TERMINAL 3	2	GATE AREA F1-F10	270	270	2X43T8	2X42T28R	Y	8,760	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	23.220	13.500
472	TERMINAL 3	2	GATE AREA F1-F10	199	199	1X32T8	NR	Y	8,760	2X25WATT 3' T8 ELECTRONIC	NO RETROFIT	8.159	8.159
473	TERMINAL 3	2	OFFICE 2022	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
474	TERMINAL 3	2	OFFICE 2021	3	3	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.258	0.150
475	TERMINAL 3	2	OUTER OFFICE	5	5	2X43T8	2X42T28R	Y	6,750	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.430	0.250
476	TERMINAL 3	2	OFFICE 2018	1	1	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.069	0.050
477	TERMINAL 3	2	HALL	1	1	2X42EE	2X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.069	0.050
478	TERMINAL 3	2	MAIN OFFICE	6	6	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.618	0.300
479	TERMINAL 3	2	OFFICE	1	1	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.103	0.050
480	TERMINAL 3	2	OFFICE 2010	2	2	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.206	0.100

RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
481	TERMINAL 3	2	OFFICE 2009	2	2	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.206	0.100
482	TERMINAL 3	2	ADDN'L OFFICES	12	12	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	1.236	0.600
483	TERMINAL 3	2	RESTROOMS	2	2	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.138	0.100
484	TERMINAL 3	2	STAIRS	4	4	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.276	0.200
485	TERMINAL 3	1	HALL	2	2	2X42EE	2X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.138	0.100
486	TERMINAL 3	1	OFFICE	6	6	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.618	0.300
487	TERMINAL 3	1	TOOL ROOM	12	12	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.828	0.600
488	TERMINAL 3	1	BREAK RM	3	3	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.207	0.150
489	TERMINAL 3	1	RESTROOMS	9	9	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.621	0.450
490	TERMINAL 3	1	MAINTENANCE AREA	9	9	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.621	0.450
491	TERMINAL 3	1	MECHANICAL RMS	15	15	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.035	0.750
492	TERMINAL 3	1	MECHANICAL RMS	24	24	HPS-150	NV-1X42T28	Y	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	4.800	1.200
493	TERMINAL 3	1	UNDER CONCOURSE F	70	70	HPS-150	NV-1X42T28	Y	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	14.000	3.500
494	TERMINAL 3	1	TRAINING RM 1124	8	8	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.824	0.400
495	TERMINAL 3	1	HALL	5	5	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.515	0.250
496	TERMINAL 3	1	RESTROOMS	4	4	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.276	0.200
497	TERMINAL 3	1	BREAK RM 1121	3	3	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.309	0.150
498	TERMINAL 3	1	RM 1117 & 1118	7	7	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.721	0.350
499	TERMINAL 3	1	ACROSS FROM 1118	3	3	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.309	0.150
500	TERMINAL 3	1	RM 1110	4	4	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.412	0.200
501	TERMINAL 3	1	HALL	2	2	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.206	0.100
502	TERMINAL 3	1	RM 1112	4	4	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.412	0.200
503	TERMINAL 3	1	TOOL ROOM	50	50	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.950	2.500
504	TERMINAL 3	1	GATE AREA E1-E10	30	30	1X41T8	1X41T28	Y	8,760	1X4 1-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.900	0.780
505	TERMINAL 3	1	GATE AREA E1-E10	270	270	2X43T8	2X42T28R	Y	8,760	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	23.220	13.500
506	TERMINAL 3	1	GATE AREA E1-E10	199	199	1X32T8	NR	Y	8,760	2X25WATT 3' T8 ELECTRONIC	NO RETROFIT	8.159	8.159
507	TERMINAL 3	1	UNDER CONCOURSE E	160	160	HPS-150	NV-1X42T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	32.000	8.000
508	TERMINAL 3	1	UNDER CONCOURSE E	76	76	HPS-150	NV-1X42T28	Ν	4,380	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	15.200	3.800
509	TERMINAL 3	1	UNDER CONCOURSE E	211	211	1X42EE	1X42T28	Ν	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	14.559	10.550
510	TERMINAL 3	1	AIRTRAN BELOW CONC. E	260	260	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	26.780	13.000
511	TERMINAL 3	1	USAIR BELOW CONC. E	200	200	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	20.600	10.000
512	TERMINAL 3	1	ELEC/MECH RM BELOW E	300	300	1X42EE	1X42T28	Ν	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	20.700	15.000
513	TERMINAL 3	1	STORAGE FOOD	65	65	2X42EE	2X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	4.485	3.250
514	TERMINAL 3	2	CONCOURSE E TSA SCREEN	33	33	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	2.838	2.442
515	TERMINAL 3	2	HALL TO CONCOURSE	28	28	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.652	1.400
516	TERMINAL 3	2	HALL TO CONCOURSE	16	16	1X32T8	NR	Y	8,760	2X25WATT 3' T8 ELECTRONIC	NO RETROFIT	0.656	0.656
517	TERMINAL 3	2	AMERICO'S	12	12	70HA20	18CFR	Y	8,760	70 WATT HALOGEN PAR 20 LAMP	18 WATT COMPACT FLUORESCENT FLOOD REFLECTOR	0.840	0.264
518	TERMINAL 3	2	AMERICO'S	7	7	75A	15CFS	Y	8,760	INCANDESCENT "A" LAMPS - 75 WATT	15 WATT COMPACT FLUOR. SCREW IN- PHILLIPS SLS	0.525	0.133
519	TERMINAL 3	2	KEY WEST	10	10	75A	15CFS	Y	8,760	INCANDESCENT "A" LAMPS - 75 WATT	15 WATT COMPACT FLUOR. SCREW IN- PHILLIPS SLS	0.750	0.190
520	TERMINAL 3	2	JETWAYS CONC. E	150	150	1X41EE	1X41T28	Y	8,760	1 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	5.400	3.900
521	TERMINAL 4	1	BAGGAGE CLAIM	98	98	2X42T8	2X42T28	Y	8,760	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	5.782	4.900
522	TERMINAL 4	1	BAGGAGE CLAIM	183	183	2.32CFL	NR	Y	8,760	2X32-WATT COMPACT FLUORESCENT	NO RETROFIT	11.712	11.712
523	TERMINAL 4	1	BAGGAGE CLAIM	56	56	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	3.304	2.800
524	TERMINAL 4	1	ENTRANCE LOBBIES	12	12	2.32CFL	NR	Y	8,760	2X32-WATT COMPACT FLUORESCENT	NO RETROFIT	0.768	0.768
525	TERMINAL 4	1	ENTRANCE LOBBIES	3	3	1X1234T8	1X1234T28	Y	8,760	1X12 3-LAMP T8 ELEC BALLAST	12' FIXTURE 3 - 28 WATT T8 3-LAMP ELECTRONIC BALLAST	0.258	0.222
526	TERMINAL 4	1	AT WINDOWS	32	32	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.888	1.600
527	TERMINAL 4	1	INT'L ARRIVALS	65	65	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	4.485	3.250
528	TERMINAL 4	1	INT'L ARRIVALS	25	25	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	2.150	1.850

— — —								<u> </u>					
RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
529	TERMINAL 4	1	INT'L ARRIVALS	12	12	1X41T8	1X41T28	Y	8,760	1X4 1-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.360	0.312
530	TERMINAL 4	1	EXIT SIGNS	6	6	E2.20	NF-ELED	Y	8,760	EXIT -(2) 20 WATT INCANDESCENT SCREW IN	EXIT - (2) 2 WATT LED HARDWIRE - NEW FIXTURE	0.240	0.024
531	TERMINAL 4	1	HPS SCONCES	4	4	HPS-250	NR	Y	8,760	250 HIGH PRESSURE SODIUM/BALLAST	NO RETROFIT	1.240	0.000
532	TERMINAL 4	1	ELEVATORS	4	4	1X22SS	1X22T8L	Y	8,760	2 -F20T12-STD LAMP-STD BALLAST	2 -F017T8-ELECTRONIC LOW POWER	0.192	0.100
533	TERMINAL 4	1	ELEVATORS	4	4	1X42SS	1X42T28L	Y	8,760	2 -F40T12 STD LAMP-STD BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP LP ELECTRONIC BALLAST	0.364	0.176
534	TERMINAL 4	2	ABOVE ESCALATORS	92	92	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	5.428	4.600
535	TERMINAL 4	2	ABOVE TICKET COUNTERS	58	58	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	3.422	2.900
536	TERMINAL 4	2	GENERAL AREA	175	175	2.32CFL	NR	Y	8,760	2X32-WATT COMPACT FLUORESCENT	NO RETROFIT	11.200	11.200
537	TERMINAL 4	2	VENDOR AREA	56	56	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	3.304	2.800
538	TERMINAL 4	2	RESTROOMS	6	6	1X42T8	1X42T28	Y	8,760	1X4 2-LAMP T8	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.354	0.300
539	TERMINAL 4	2-4	OFFICE BLDG ADMIN	450	450	2X43T8	2X43T28	Y	8,760	3 -F032T8-ELECTRONIC	2X4 3-LAMP 28 WATT T8 3-LAMP ELECTRONIC BALLAST	38.700	33.300
540	TERMINAL 4	1	FIS	17	17	2X43T8	2X42T28R	Y	8,760	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	1.462	0.850
541	TERMINAL 4	1	TSA	2	2	2X43T8	2X42T28R	Y	8,760	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
542	TERMINAL 4	1	TSA	2	2	2X43T8	2X42T28R	Y	8,760	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.172	0.100
543	TERMINAL 4	1	TSA ATO	1	1	2X43T8	2X42T28R	Y	8,760	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.086	0.050
544	TERMINAL 4	1	TICKET OFFICES	12	12	2X43T8	2X42T28R	Y	8,760	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	1.032	0.600
545	TERMINAL 4	1	CUSTOMS	111	111	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	11.433	5.550
546	TERMINAL 4	1	COMPUTER RM	2	2	2X44EE	2X42T28R	Y	8,760	4 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.276	0.100
547	TERMINAL 4	1	COMPUTER RM	2	2	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.206	0.100
548	TERMINAL 4	1	CART AREA	12	12	2X22UEE	2X22T8U6	Y	8,760	2 -F40T12 U TUBE-ES LAMP-ES BALLAST	2 - F32T8 -6" U- TUBE - ELECTRONIC	0.864	0.708
549	TERMINAL 4	1	RESTROOMS	5	5	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.345	0.250
550	TERMINAL 4	1	COMP. OFFICE	2	2	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.206	0.100
551	TERMINAL 4	1	CANINE	2	2	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.206	0.100
552	TERMINAL 4	1	ISOLATION	10	10	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	1.030	0.500
553	TERMINAL 4	1	CHIEF'S OFFICE	2	2	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.206	0.100
554	TERMINAL 4	1	ESCALATOR LOBBY	6	6	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.618	0.300
555	TERMINAL 4	2	CUSTOMS	52	52	2X43T8	2X42T28R	Y	8,760	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	4.472	2.600
556	TERMINAL 4	2	CUSTOMS	2	2	2X22UEE	2X22T8U6	Y	8,760	2 -F40T12 U TUBE-ES LAMP-ES BALLAST	2 - F32T8 -6" U- TUBE - ELECTRONIC	0.144	0.118
557	TERMINAL 4	2	ELEVATOR	1	1	1X22SS	1X22T8L	Y	8,760	2 -F20T12-STD LAMP-STD BALLAST	2 -F017T8-ELECTRONIC LOW POWER	0.048	0.025
558	TERMINAL 4	2	ELEVATOR	2	2	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.138	0.100
559	TERMINAL 4	2	CUSTOMS	15	15	MV-100	2.13CFN	Y	8,760	100 WATT MERCURY VAPOR/BALLAST	(2) 13 WATT COMPACT FLUORECSCENT NEW FIXTURE	1.905	0.510
560	TERMINAL 4	2	CUSTOMS	22	22	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	2.266	1.100
561	TERMINAL 4	2	CUSTOMS	63	63	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	6.489	3.150
562	TERMINAL 4	2	CUSTOMS	3	3	2X22UEE	2X22T8U6	Y	8,760	2 -F40T12 U TUBE-ES LAMP-ES BALLAST	2 - F32T8 -6" U- TUBE - ELECTRONIC	0.216	0.177
563	TERMINAL 4	2	RESTROOMS	6	6	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.414	0.300
564	TERMINAL 4	2	DOWNRAMP	17	17	2X43T8	2X42T28R	Y	8,760	3 -F032T8-ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	1.462	0.850
565	TERMINAL 4	2	WALKWAY TO GATES	46	46	2.32CFL	2X42128R NR	Y Y	8,760	2X32-WATT COMPACT FLUORESCENT	2X4 2-LAMP 28 WATT 18 2-LAMP ELECTRONIC BALLAST REFLECTOR NO RETROFIT	2.944	2.944
565	TERMINAL 4	4	JETWAYS	80	80	2.32CFL 2X43T8	2X42T8R	Y Y	8,760	3 -F032T8-ELECTRONIC	2 -F032 T8-ELECTRONIC-2x4 REFLECTOR	6.880	4.720
566	TERMINAL 4	1	RESTROOMS	4	80 4	1X42EE	1X42T28	r Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.276	0.200
568	TERMINAL 4		RMS 107-109	4 18	4 18	2X43EE	2X42T28	Y Y	8,760		2X4 2-LAMP 28 WATT 18 2-LAMP ELECTRONIC BALLAST	1.854	0.200
				18 7	10		2X42128R 2X22T8U6	Y Y	,	3 -F40T12-ES LAMP-ES BALLAST			
569	TERMINAL 4		RMS 107-109		,	2X22UEE			8,760	2 -F40T12 U TUBE-ES LAMP-ES BALLAST	2 - F32T8 -6" U- TUBE - ELECTRONIC	0.504	0.413
570	TERMINAL 4		HALL	2	2	2X22UEE	2X22T8U6	Y	8,760	2 -F40T12 U TUBE-ES LAMP-ES BALLAST		0.144	0.118
571	TERMINAL 4	1	BAGGAGE OFFICES	6	6	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.618	0.300
572	TERMINAL 4	1	BAGGAGE OFFICES	4	4	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.276	0.200
573	TERMINAL 4	1	AIR CANADA	4	4	2X44EE	2X42T28R	Y	6,750	4 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.552	0.200
574	TERMINAL 4	1	PUBLIC BAGGAGE	4	4	2X44EE	2X42T28R	Y	6,750	4 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.552	0.200
575	TERMINAL 4	1	DISPLAY SIGNS	36	36	1X32SS	1X32T8L	Y	6,750	2 -F30-T12-STD LAMP-STD BALLAST	2 -F025T8- LOW POWER	2.556	1.332
576	TERMINAL 4	1	UNDER CONCOURSE	81	81	HPS-400	NV-1X84T28	N	6,750	400 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	37.665	7.047

RET.	BUILDING	FLR	ROOM DESCRIPTION	EXIST.	PROP.	ExistCode	PropCode	A/C	Hours/Yr	ExistDescription	PropDescription	ExistkWh	PropkWh
577	TERMINAL 4	1	REAR OFFICES/MISC.	600	600	2X43EE	2X42T28R	Y	6,750	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	61.800	30.000
578	TERMINAL 4	1	BAGGAGE HANDLING	130	130	HPS-400	NV-1X84T28	N	6,750	400 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	60.450	11.310
579	TERMINAL 4	1	MISC ROOM	18	18	1X42EE	1X42T28	Y	6,750	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.242	0.900
580	TERMINAL 4	1	MECHANICAL RMS	40	40	1X42EE	1X42T28	N	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	2.760	2.000
581	TERMINALS ROADWAY	1	ABOVE ROAD	184	184	HPS-150	NV-1X84T28	N	8,760	150 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	36.800	16.008
582	URS BLDG	1	GENERAL AREA	17	17	1X42EE	1X42T28	Y	4,380	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.173	0.850
583	URS BLDG	1	GENERAL AREA	3	3	1X42EE	1X42T28	Y	4,380	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	0.207	0.150
584	URS BLDG	1	GENERAL AREA	24	24	2X42T8	2X42T28	Y	4,380	2-FO32T8 ELECTRONIC	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	1.416	1.200
585	URS BLDG	1	EXTERIOR	8	8	MH-250	NV-1X84T28	N	4,380	250 WATT METAL HALIDE/BALLAST	NEW VAPORTIGHT - 1X8 4-28 WATT T8 - 4-LAMP ELECTRONIC BALLAST	2.400	0.696
586	URS BLDG	1	EXTERIOR	2	2	MH-400	NR	N	4,380	400 WATT METAL HALIDE/BALLAST	NO RETROFIT	0.920	0.000
587	URS BLDG	1	EXTERIOR	4	4	75A	13CFN	N	4,380	INCANDESCENT "A" LAMPS - 75 WATT	13 WATT COMPACT FLUORESCENT NEW FIXTURE	0.300	0.068
588	WEST MAINTENANCE	1	OFFICES ETC	8	8	2X43EE	2X42T28R	Y	8,760	3 -F40T12-ES LAMP-ES BALLAST	2X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST REFLECTOR	0.824	0.400
589	WEST MAINTENANCE	1	GENERAL AREA	154	154	1X42EE	1X42T28	Y	8,760	2 -F40T12-ES LAMP-ES BALLAST	1X4 2-LAMP 28 WATT T8 2-LAMP ELECTRONIC BALLAST	10.626	7.700
590	WEST MAINTENANCE	1	EXTERIOR	43	43	HPS-100	NV-1X42T28	Ν	8,760	100 HIGH PRESSURE SODIUM/BALLAST	NEW VAPORTIGHT - 1X4 2-28 WATT T8 2-LAMP ELECTRONIC BALLAST	5.805	2.150
			TOTALS	26,959	26,893								

Sum of EXIST	BUILDING	3														
					ЭE			TERMINAL 1 ENPLANE					ROADWA		WEST MAINTENANCE	
	BCAD BLDG NORTH	SOUTH	o	FACILITIES BLDG	GARAGE	GE		ENP					ROA		TENA	
	DG	BCAD BLDG	CYRESS RCC	ES I	S S	PALM GARAGE	AL 1	AL 1	AL 2	AL 3	AL 4	AL 4	TERMINALS	g	IAIN	otal
	D BI	D BI	ESS	ILITI	scu	M G,	MIN	MIN	MIN	MIN	MIN	MIN	MIN	BLDG	ST M	d To
ExistCode	BCA	BCA	сув	FAC	HIBISCUS	PALI	TERMINAL	TER	TERMINAL	TERMINAL	TERMINAL	TERMINAL	TER	URS	WES	81 Grand Total
13CFL										18					-	18
1X1234T8 1X13T8U3									162	139	3					3 301
1X22SS									11	4	4	1				20
1X2BIAX40 1X32SS									16	45 22		36				45 74
1X32T8									23	414		50				437
1X41EE 1X41T8										150 60	10					150
1X4118 1X42EE									166	622	12 65	79		20	154	72 1106
1X42SS									3	2	4					9
1X42T8 1X81SS			327		538		1537		244 40	831	300					3777 40
1X82SS									60							60
2.32CFL 2X22T8U6	1								236	156	370	46				416 393
2X22UEE									35	150		26				76
2X42EE										68						68
2X42T8	79	326									98			24		527
2X43EE	_								1132	599		844			8	2583
2X43T8	5	92	12	100	16		91		691	1255	475	183				2920
2X44EE 2X44T8	44	46							13	442		10				465 90
70HA20		10								32						32
75A									10 27	122				4		136 252
75R30 E2.20						16			27	225 4	6					252
ELED					252	-										252
HPS-100 HPS-150					17 3666	805			94	330			184		43	60 5079
HPS-150 HPS-200					3000	605			94	330			104			<u> </u>
HPS-250					46						4					50
HPS-400 MH-100		42			68			132				211				279 174
MH-150	-	42	4596					152								4596
MH-175							96									96
MH-200 MH-250			180		682 64	42		66						8		682 360
MH-250 MH-400			633	57	04	42	295	00						8		<u> </u>
MV-100									11	209		15				235
Grand Total	129	506	5748	157	5349	863	2019	198	2987	5764	1341	1451	184	58	205	26959
	ļ I															

Sum of PROP.			
Sum of FROE.			
		ICE	
		R	
	<u>a</u>	Ξ	rotal
PropCode	Total	JNIT PRICE	.0
13CFN	4	50.00	200.00
15CFD	10	55.00	550.00
15CFR	9	65.00	585.00
15CFS	140	15.00	2,100.00
18CFR	257	65.00	16,705.00
1X1234T28	3	16.00	48.00
1X22T8L	20	65.00	1,300.00
1X32T8L	74	65.00	4,810.00
1X41T28	222	12.00	2,664.00
1X42T28	4850	14.00	67,900.00
1X42T28L	42	65.00	2,730.00
1X81T8	40	85.00	3,400.00
1X824T28RKIT	60	100.00	6,000.00
2.13CFN	15	75.00	1,125.00
2.22CFN	220	95.00	380.00
2.42CFH	66	105.00	6,930.00
2X22T8U6	76	85.00	6,930.00
2X42T28	595	14.00	8,330.00
2X42T28R	3815	85.00	8,330.00
2X42T8R	104	85.00	324,275.00
2X43T28	2139	16.00	34,224.00
42CFN	42	150.00	6,300.00
MH-100PS	64	200.00	12,800.00
MH-300PS	295	200.00	59,000.00
NF-ELED	28	50.00	1,400.00
	2145	0.00	0.00
NV-1X42T28	7709	200.00	1,541,800.00
NV-1X84T28 Total	3849 26893	300.00	1,154,700.00
Less Rebate	20033		\$3,275,516 \$215,071
Net Project Cos	st (include	s labor)	\$215,071
			ψ3,033,343

B.2.

Lighting System Log Data

	JO	HNSON CON	TROLS, INC	C FORT	LAUDERD	ALE - HOL	LYWOOD I	NTERNATI	ONAL AIRI	PORT
L	OGGE	R DATA ANAL	YSIS		DATA COLI		OM 9/19/06	TO 9/25/06 I		LS 1-4
							ART		ND	-
TERM		OCCUPIED	VACANT	LOGGER	GATE	DATE	TIME	DATE	TIME	TOTAL HRS
	1	24.40	1.73	1	B-1	9/19/06	11:10 AM	9/20/06	1:28 PM	26.13
	1	22.28	3.78	2	B-2	9/19/06	11:20 AM	9/20/06	1:30 PM	26.06
	1	21.56	4.47	4	B-4	9/19/06	11:25 AM	9/20/06	1:32 PM	26.03
	1	19.30	6.76	3	B-7	9/19/06	11:30 AM	9/20/06	1:33 PM	26.06
	2	9.88	11.47	1	D-1	9/20/06	2:05 PM	9/21/06	2:00 PM	21.35
	2	13.50	10.37	2	D-3	9/20/06	2:06 PM	9/21/06	2:03 PM	23.87
	2	13.94	9.98	4	D-6	9/20/06	2:15 PM	9/21/06	2:05 PM	23.92
	2	13.59	10.22	3	D-9	9/20/06	2:18 PM	9/21/06	2:07 PM	23.81
	3	11.03			E-1	9/21/06		9/22/06		
	3	7.82			E-6	9/21/06	2:28 PM	9/22/06		24.26
	3	7.42			E-7	9/21/06				
	3	8.38		4	E-8	9/21/06	2:31 PM	9/22/06		24.40
	4	40.13		1	H-1	9/22/06				73.62
	4	49.20	24.48	2	H-5	9/22/06	3:28 PM	9/25/06	5:38 PM	73.68
	4	43.47			H-8	9/22/06	3:30 PM	9/25/06	5:40 PM	
	4	37.15	36.95	4	H-9	9/22/06	3:32 PM	9/25/06	5:42 PM	74.10
TERMS.	. 2-4	21.29	19.07	47.68%	UNOCCUP	PIED - MOTIO	ON SENSOR	<u>RS HIGHLY F</u>	RECOMMEN	IDED
TERM. 1	1	21.89	4.19	16.10%	UNOCCUP	PIED - MOTIO	ON SENSOR	RS NOT REC	OMMENDE	D

C.1.

Photovoltaic Project Data Option 1

RETScreen[®] Energy Model - Photovoltaic Project

Training & Support

Site Conditions		Estimate	Notes/Range
Project name	Fort Laude	erdale-Hollywood International Air	
Project location		Broward County, Florida	
Nearest location for weather data	-	Miami, FL	→ <u>Complete SR&SL sheet</u>
Latitude of project location	°N	25.8	-90.0 to 90.0
Annual solar radiation (tilted surface)	MWh/m²	2.21	
Annual average temperature	°C	24.2	-20.0 to 30.0
System Characteristics		Estimate	Notes/Range
Application type	-	On-grid	
Grid type	-	Central-grid	
PV energy absorption rate	%	100.0%	
PV Array			
PV module type	-	mono-Si	
PV module manufacturer / model #		Canadian Solar/ CS6C-125M	See Product Database
Nominal PV module efficiency	%	15.4%	4.0% to 15.0%
NOCT	°C	45	40 to 55
PV temperature coefficient	% / °C	0.40%	0.10% to 0.50%
Miscellaneous PV array losses	%	5.0%	0.0% to 20.0%
Nominal PV array power	kWp	25.00	
PV array area	m²	162.3	
Power Conditioning			
Average inverter efficiency	%	90%	80% to 95%
Suggested inverter (DC to AC) capacity	kW (AC)	22.5	
Inverter capacity	kW (AC)	30.0	
Miscellaneous power conditioning losses	%	0%	0% to 10%

Annual Energy Production (12.00 mont	hs analysed)	Estimate	Notes/Range
Specific yield	kWh/m²	268.7	
Overall PV system efficiency	%	12.1%	
PV system capacity factor	%	19.9%	
Renewable energy collected	MWh	48.463	
Renewable energy delivered	MWh	43.617	
	kWh	43,617	
Excess RE available	MWh	0.000	
			Complete Cost Analysis sheet

Version 3.2

© Minister of Natural Resources Canada 1997 - 2005.

RETScreen[®] Solar Resource and System Load Calculation - Photovoltaic Project

Site Latitude and PV Array Orientation	n	Estimate	Notes/Range
Nearest location for weather data		Miami, FL	See Weather Database
Latitude of project location	°N	25.8	-90.0 to 90.0
PV array tracking mode	-	Azimuth	
Slope of PV array	0	30.0	0.0 to 90.0

Monthly Inputs

	Fraction of month used	Monthly average daily radiation on horizontal surface	Monthly average temperature	Monthly average daily radiation in plane of PV array	Monthly solar fractior
Month	(0 - 1)	(kWh/m²/d)	(°C)	(kWh/m²/d)	(%)
January	1.00	3.54	19.6	5.11	-
February	1.00	4.24	20.1	5.77	-
March	1.00	5.15	22.0	6.53	-
April	1.00	5.93	23.9	7.08	-
May	1.00	5.93	25.7	6.96	-
June	1.00	5.57	27.0	6.38	-
July	1.00	5.83	28.0	6.78	-
August	1.00	5.59	28.0	6.46	-
September	1.00	4.88	27.4	5.89	-
October	1.00	4.35	25.5	5.73	-
November	1.00	3.66	22.9	5.15	-
December	1.00	3.31	20.6	4.88	-
			Annual	Season of use	
Solar radiation (h	orizontal)	MWh/m²	1.76	1.76	
Solar radiation (ti	Ited surface)	MWh/m²	2.21	2.21	
Average tempera	iture	°C	24.2	24.2	

Load Characteristics		Estimate	
Application type	-	On-grid	
			Return to Energy Model sheet

Version 3.2

© Minister of Natural Resources Canada 1997 - 2005.

RETScreen[®] Cost Analysis - Photovoltaic Project

Type of analysis:	Pre-feasibility	_	Currency:	 \$		Cost references:	None
I Costs (Credits)	Unit	Quantity	Unit Cost	Amount R	elative Costs	Quantity Range L	Jnit Cost I
easibility Study							
Other - Feasibility study	Cost	1	\$ 1,250	\$ 1,250		-	-
Sub-total :				\$ 1,250	0.5%		
evelopment							
Other - Development	Cost	1	\$ 2,500	\$ 2,500		-	-
Sub-total :				\$ 2,500	1.1%		
ngineering							
Other - Engineering	Cost	1	\$ 25,000	\$ 25,000		-	-
Sub-total :			-	\$ 25,000	11.0%		
nergy Equipment							
PV module(s)	kWp	25.00	\$ 4,000	\$ 100,000		-	-
Transportation	project	0	\$ -	\$ -		-	-
Other - Energy equipment	Cost	0	\$ -	\$ -		-	-
Credit - Energy equipment	Credit	0	\$ -	\$ -		-	-
Sub-total :			-	\$ 100,000	43.9%		
alance of Equipment							
Module support structure	m²	162.3	\$ -	\$ -		-	-
Inverter	kW AC	30.0	\$ -	\$ -		-	-
Other electrical equipment	kWp	25.00	\$ -	\$ -		-	-
System installation	kWp	25.00	\$ 3,500	\$ 87,500		-	-
Transportation	project	0	\$ -	\$ -		-	-
Other - Balance of equipment	Cost	0	\$ -	\$ -		-	-
Credit - Balance of equipment	Credit	0	\$ -	\$ -		-	-
Sub-total :				\$ 87,500	38.4%		
iscellaneous							
Training	p-h	8	\$	\$ 520		-	-
Contingencies	%	5%	\$ 216,770	\$ 10,839		-	
Sub-total :				\$ 11,359	5.0%		
I Costs - Total				\$ 227,609	100.0%		
ual Costs (Credits)	Unit	Quantity	Unit Cost	Amount R	elative Costs	Quantity Range L	Jnit Cost F

Annual Costs (Credits)	Unit	Quantity	Unit Cost	Amount Rela	live Cosis	Quantity Range	Jill Cost Range
O&M		_					
Property taxes/Insurance	project	0	\$ -	\$ -		-	-
O&M labour	p-h	0	\$ -	\$ -		-	-
Other - O&M	Cost	8	\$ 55	\$ 440		-	-
Credit - O&M	Credit	0	\$ -	\$ -		-	-
Contingencies	%	0%	\$ 440	\$ -		-	-
Sub-total :				\$ 440	100.0%		
Annual Costs - Total				\$ 440	100.0%		

riodic Costs (Credits)		Period	Unit Cost	Amount	Interval Range	Unit Cost Range
Inverter Repair/Replacement	Cost	12 yr	\$ 5,000	\$ 5,000	-	-
			\$ -	\$ -	-	-
			\$ -	\$ -	-	-
End of project life		-	\$ -	\$ -	<u>Go to G</u>	HG Analysis sheet

Version 3.2

© Minister of Natural Resources Canada 1997 - 2005.

RETScreen[®] Greenhouse Gas (GHG) Emission Reduction Analysis - Photovoltaic Project

Use GHG analysis sheet?

Type of analysis: Standard

Background Information

Project Information

Project name Project location

Broward County, Florida

Yes

Global Warming Potential of GHG

Fort Lauderdale-Hollywood International Airport 1 tonne CH₄ = 21 tonnes CO₂ (IPCC 1996) 1 tonne N₂O = 310 tonnes CO₂ (IPCC 1996)

Base Case Electricity System (Baseline)

Fuel type	Fuel mix	CO ₂ emission factor	CH₄ emission factor	N ₂ O emission factor	Fuel conversion efficiency	T & D losses	GHG emission factor
	(%)	(kg/GJ)	(kg/GJ)	(kg/GJ)	(%)	(%)	(t _{co2} /MWh)
Natural gas	50.0%	56.1	0.0030	0.0010	45.0%	8.0%	0.491
Coal	50.0%	94.6	0.0020	0.0030	35.0%		0.983
		_					_
		_			-		_
		_			_		
Electricity mix	100.0%	202.9	0.0065	0.0055		4.0%	0.737

Proposed Case Electricity System (Photovoltaic Project)

Fuel type	Fuel mix (%)	CO ₂ emission factor (kg/GJ)	CH₄ emission factor (kg/GJ)	N₂O emission factor (kg/GJ)	Fuel conversion efficiency (%)	T & D losses (%)	GHG emission factor (t _{co2} /MWh)
Electricity system							
Solar	100.0%	0.0	0.0000	0.0000	100.0%	4.0%	0.000

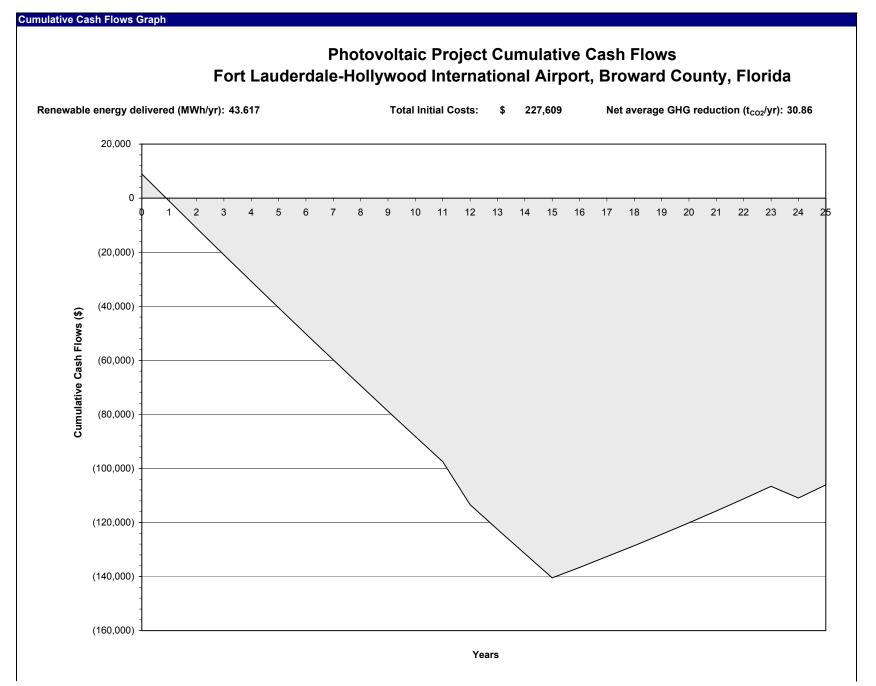
	Base case GHG emission factor	Proposed case GHG emission factor	End-use annual energy delivered	Annual GHG emission reduction
	(t _{co2} /MWh)	(t _{co2} /MWh)	(MWh)	(t _{co2})
Electricity system	0.737	0.000	41.872	30.86
			Net GHG emission reduction	t _{CO2} /yr 30.86

Version 3.2

© United Nations Environment Programme & Minister of Natural Resources Canada 2000 - 2005. UNEP/DTIE and NRCan/CETC - Varennes

RETScreen[®] Financial Summary - Photovoltaic Project

nual Energy Balance							ash Flows		
Project nameFort Lauderdale-Holly		•				Year	Pre-tax	After-tax	Cumulat
Project location	Browa	rd County, Florida	Nominal PV array power	kWp	25.00	#	\$	\$	
						0	8,957	8,957	8,9
enewable energy delivered	MWh	43.617	Net GHG reduction	t _{CO2} /yr	30.86	1	(10,038)	(10,038)	(1,0
						2	(9,971)	(9,971)	(11,
irm RE capacity	kW	-	Net GHG emission reduction - 25 yrs	t _{CO2}	771.55	3	(9,902)	(9,902)	(20,9
pplication type		On-grid				4	(9,832)	(9,832)	(30,
						5	(9,760)	(9,760)	(40,
ancial Parameters						6	(9,686)	(9,686)	(50,
						7	(9,610)	(9,610)	(59,
voided cost of energy	\$/kWh	0.070	Debt ratio	%	60.0%	8	(9,532)	(9,532)	(69,
E production credit	\$/kWh	-	Debt interest rate	%	4.5%	9	(9,453)	(9,453)	(78,
			Debt term	yr	15	10	(9,371)	(9,371)	(88,
						11	(9,287)	(9,287)	(97,
HG emission reduction credit	\$/t _{CO2}	-	Income tax analysis?	yes/no	No	12	(15,926)	(15,926)	(113,
						13	(9,114)	(9,114)	(122,
						14	(9,024)	(9,024)	(131,
						15	(8,931)	(8,931)	(140,
						16	3,879	3,879	(136
nergy cost escalation rate	%	2.5%				17	3,976	3,976	(132,
flation	%	2.5%				18	4,076	4,076	(128,
iscount rate	%	9.0%				19	4,178	4,178	(124,
oject life	yr	25				20	4,282	4,282	(120
2	,					21	4,389	4,389	(115
ject Costs and Savings						22	4,499	4,499	(111,
						23	4,611	4,611	(106,
nitial Costs			Annual Costs and Debt			24	(4,317)	(4,317)	(110,
Feasibility study 0.5%	\$	1,250	O&M	\$	440	25	4,845	4,845	(106,
Development 1.1%	\$	2,500	Fuel	\$	-				•
Engineering 11.0%	\$	25,000	Debt payments - 15 yrs	\$	12,716				
Energy equipment 43.9%	\$	100,000	Annual Costs and Debt - Total	\$	13,156				
Balance of equipment 38.4%	\$	87,500		•	,				
Miscellaneous 5.0%		,							
0.070	S	11.359	Annual Savings or Income						
itial Costs - Total 100.0%	\$ \$	11,359 227.609	Annual Savings or Income Energy savings/income	\$	3.053				
itial Costs - Total 100.0%		11,359 227,609	Annual Savings or Income Energy savings/income	\$	3,053				
		227,609	•	\$	3,053				
	\$		•	\$	3,053				
	\$	227,609	Energy savings/income	\$\$	3,053 3,053				
centives/Grants	\$	227,609	•	·					
centives/Grants eriodic Costs (Credits)	\$ \$	227,609 100,000	Energy savings/income Annual Savings - Total	·					
centives/Grants eriodic Costs (Credits)	\$ \$	227,609	Energy savings/income	·					
centives/Grants eriodic Costs (Credits)	\$ \$ \$	227,609 100,000	Energy savings/income Annual Savings - Total	·					
icentives/Grants eriodic Costs (Credits) Inverter Repair/Replacement	\$ \$ \$ \$	227,609 100,000	Energy savings/income Annual Savings - Total	·					
centives/Grants eriodic Costs (Credits)	\$ \$ \$	227,609 100,000	Energy savings/income Annual Savings - Total	·					
ncentives/Grants Periodic Costs (Credits) Inverter Repair/Replacement End of project life -	\$ \$ \$ \$	227,609 100,000	Energy savings/income Annual Savings - Total	·					
centives/Grants eriodic Costs (Credits) Inverter Repair/Replacement End of project life -	\$ \$ \$ \$	227,609 100,000	Energy savings/income Annual Savings - Total Schedule yr # 12,24	\$	3,053				
eriodic Costs (Credits) Inverter Repair/Replacement End of project life - ancial Feasibility	\$ \$ \$ \$ \$	227,609 <u>100,000</u> 5,000	Energy savings/income Annual Savings - Total Schedule yr # 12,24 Calculate energy production cost?	\$ yes/no	3,053 Yes				
ncentives/Grants Periodic Costs (Credits) Inverter Repair/Replacement End of project life - nancial Feasibility Pre-tax IRR and ROI	\$ \$ \$ \$ \$	227,609 100,000 5,000 - - - - - - - - 2	Energy savings/income Annual Savings - Total Schedule yr # 12,24 Calculate energy production cost? Energy production cost	\$ yes/no \$/kWh	3,053 Yes 0.19				
ncentives/Grants Periodic Costs (Credits) Inverter Repair/Replacement End of project life - nancial Feasibility	\$ \$ \$ \$ \$	227,609 <u>100,000</u> 5,000	Energy savings/income Annual Savings - Total Schedule yr # 12,24 Calculate energy production cost?	\$ yes/no	3,053 Yes				


RETScreen[®] Financial Summary - Photovoltaic Project

Net	t Present Value - NPV	\$	(64,729)	Project debt	\$	136,565
Anr	nual Life Cycle Savings	\$	(6,590)	Debt payments	\$/yr	12,716
Ber	nefit-Cost (B-C) ratio	-	0.29	Debt service coverage	-	(0.25)

Version 3.2

© Minister of Natural Resources Canada 1997 - 2005.

RETScreen[®] Financial Summary - Photovoltaic Project

Year-to-positive cash flow: immediate

Version 3.2

© Minister of Natural Resources Canada 1997 - 2005.

Jse sensitivity analysis	sheet?	Yes	1		Perform analysis on	After-tax IRR and	d RC
Perform risk analysis to		No			Sensitivity range	20%	
Project name	Fort Lauderda	ale-Hollywood Intern	ational Airport		Threshold	15.0	4
Project location	Br	oward County, Flori	da				
nsitivity Analysis for	After-tax IRR and	d ROI					
			Avoid	led cost of energy	(\$/kWb)		
RE delivered	Г	0.0560	0.0630	0.0700	0.0770	0.0840	
(MWh)		-20%	-10%	0%	10%	20%	
34.894	-20%	-22.7%	-19.0%	-16.5%	-14.6%	-13.0%	
39.255	-10%	-19.0%	-16.3%	-14.2%	-12.4%	-10.9%	
43.617	0%	-16.5%	-14.2%	-12.2%	-10.6%	-9.1%	
47.979	10%	-14.6%	-12.4%	-10.6%	-9.0%	-7.5%	
52.340	20%	-13.0%	-10.9%	-9.1%	-7.5%	-6.1%	
					(6.0.140.)		
nitial costs	г	0.0560	0.0630	led cost of energy 0.0700	(\$/KVVN) 0.0770	0.0840	
(\$)		-20%	-10%	0%	10%	20%	
182,087	-20%	-13.8%	-11.2%	-9.0%	-7.0%	-5.1%	
204,848	-10%	-15.3%	-12.8%	-10.8%	-9.1%	-7.5%	
227,609	0%	-16.5%	-14.2%	-12.2%	-10.6%	-9.1%	
250,369	10%	-17.6%	-15.3%	-13.4%	-11.8%	-10.4%	
273,130	20%	-18.5%	-16.2%	-14.4%	-12.8%	-11.5%	
	_				<i></i>		
Annual costs	Г	0.0560	0.0630	led cost of energy 0.0700	(\$/KVVN) 0.0770	0.0840	
(\$)		-20%	-10%	0%	10%	20%	
352	-20%	-15.8%	-13.6%	-11.7%	-10.2%	-8.7%	
396							
390	-10%	-16.2%	-13.9%	-12.0%	-10.4%	-8.9%	
	-10% 0%	-16.2% -16.5%	-13.9%	-12.0%	-10.4%	<u>-8.9%</u> -9.1%	
440	0%	-16.5%	-14.2%	-12.2%	-10.6%	-9.1%	_
440 484	0% 10%	-16.5% -16.9%	-14.2% -14.5%	-12.2% -12.5% -12.8%	-10.6% -10.8%	-9.1% -9.3%	
440 484 528	0% 10%	-16.5% -16.9% -17.3%	-14.2% -14.5% -14.8%	-12.2% -12.5% -12.8% Debt ratio (%)	-10.6% -10.8% -11.1%	-9.1% -9.3% -9.5%	
440 484 528 Pebt interest rate	0% 10%	-16.5% -16.9% -17.3% 48.0%	-14.2% -14.5% -14.8%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0%	-10.6% -10.8% -11.1% 66.0%	-9.1% -9.3% -9.5% 72.0%	
440 484 528 Pebt interest rate (%)	0% 10% 20%	-16.5% -16.9% -17.3% 48.0% -20%	-14.2% -14.5% -14.8% 54.0% -10%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0% 0%	-10.6% -10.8% -11.1% 66.0% 10%	-9.1% -9.3% -9.5% 72.0% 20%	
440 484 528 Debt interest rate (%) 3.6%	0% 10% 20% -20%	-16.5% -16.9% -17.3% 48.0% -20% -9.8%	-14.2% -14.5% -14.8% 54.0% -10% -10.7%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0% 0% -11.5%	-10.6% -10.8% -11.1% 66.0% 10% -12.4%	-9.1% -9.3% -9.5% 72.0% 20% -13.2%	
440 484 528 bebt interest rate (%) 3.6% 4.1%	0% 10% 20% -20% -10%	-16.5% -16.9% -17.3% 48.0% -20% -9.8% -10.1%	-14.2% -14.5% -14.8% 54.0% -10% -10.7% -11.0%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0% 0% -11.5% -11.9%	-10.6% -10.8% -11.1% 66.0% 10% -12.4% -12.7%	-9.1% -9.3% -9.5% 72.0% 20% -13.2% -13.5%	
440 484 528 Debt interest rate (%) 3.6% 4.1% 4.5%	0% 10% 20% -20% -10% 0%	-16.5% -16.9% -17.3% 48.0% -20% -20% -9.8% -10.1% -10.4%	-14.2% -14.5% -14.8% 54.0% -10% -10.7% -11.0% -11.4%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0% 0% -11.5% -11.9% -12.2%	-10.6% -10.8% -11.1% 66.0% 10% -12.4% -12.7% -13.1%	-9.1% -9.3% -9.5% 72.0% 20% -13.2% -13.5% -13.9%	
440 484 528 bebt interest rate (%) 3.6% 4.1%	0% 10% 20% -20% -10%	-16.5% -16.9% -17.3% 48.0% -20% -9.8% -10.1%	-14.2% -14.5% -14.8% 54.0% -10% -10.7% -11.0%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0% 0% -11.5% -11.9%	-10.6% -10.8% -11.1% 66.0% 10% -12.4% -12.7%	-9.1% -9.3% -9.5% 72.0% 20% -13.2% -13.5%	
440 484 528 Debt interest rate (%) 3.6% 4.1% 4.5% 5.0%	0% 10% 20% -20% -10% 0% 10%	-16.5% -16.9% -17.3% 48.0% -20% -9.8% -10.1% -10.4% -10.7%	-14.2% -14.5% -14.8% 54.0% -10% -10.7% -11.0% -11.4% -11.7%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0% 0% -11.5% -11.9% -12.2% -12.6%	-10.6% -10.8% -11.1% 66.0% 10% -12.4% -12.7% -13.1% -13.4%	-9.1% -9.3% -9.5% 72.0% 20% -13.2% -13.5% -13.5% -13.9% -14.2%	
440 484 528 Debt interest rate (%) 3.6% 4.1% 4.5% 5.0% 5.4%	0% 10% 20% -20% -10% 0% 10%	-16.5% -16.9% -17.3% 48.0% -20% -9.8% -10.1% -10.4% -10.7% -11.1%	-14.2% -14.5% -14.8% 54.0% -10% -10.7% -11.0% -11.4% -11.7% -12.0%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0% 0% -11.5% -11.9% -12.6% -12.6% -12.9% Debt term (yr)	-10.6% -10.8% -11.1% 66.0% 10% -12.4% -12.7% -13.1% -13.4% -13.8%	-9.1% -9.3% -9.5% 72.0% 20% -13.2% -13.5% -13.9% -14.2% -14.6%	
440 484 528 Debt interest rate (%) 3.6% 4.1% 4.5% 5.0% 5.4% Debt interest rate	0% 10% 20% -20% -10% 0% 10%	-16.5% -16.9% -17.3% -48.0% -20% -9.8% -10.1% -10.4% -10.4% -11.1% -11.1%	-14.2% -14.5% -14.8% -14.8% -10% -10% -10.7% -11.0% -11.0% -11.4% -11.7% -12.0%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0% 0% -11.5% -11.9% -12.2% -12.6% -12.9%	-10.6% -10.8% -11.1% 66.0% 10% -12.4% -12.7% -13.1% -13.4% -13.8%	-9.1% -9.3% -9.5% 72.0% 20% -13.2% -13.5% -13.5% -13.9% -14.6% 18.0	
440 484 528 Debt interest rate (%) 3.6% 4.1% 4.5% 5.0% 5.0% 5.4% Debt interest rate (%)	0% 10% 20% -20% -10% 0% 10% 20%	-16.5% -16.9% -17.3% 48.0% -20% -9.8% -10.1% -10.4% -10.7% -11.1% 12.0 -20%	-14.2% -14.5% -14.8% -14.8% -10% -10.7% -11.0% -11.0% -11.4% -11.7% -12.0%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0% 0% -11.5% -11.9% -12.2% -12.6% -12.9% Debt term (yr) 15.0 0%	-10.6% -10.8% -11.1% 66.0% 10% -12.4% -12.7% -13.1% -13.4% -13.8% 16.5 10%	-9.1% -9.3% -9.5% 72.0% 20% -13.2% -13.5% -13.9% -14.2% -14.6% 18.0 20%	
440 484 528 Debt interest rate (%) 3.6% 4.1% 4.5% 5.0% 5.4% Debt interest rate (%) 3.6%	0% 10% 20% -20% -10% 0% 10% 20%	-16.5% -16.9% -17.3% -17.3% -20% -20% -9.8% -10.1% -10.4% -10.7% -11.1% -12.0 -20% -8.9%	-14.2% -14.5% -14.8% -14.8% -10% -10.7% -10.7% -11.0% -11.4% -11.7% -12.0% 13.5 -10% -9.4%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0% 0% -11.5% -11.9% -12.2% -12.6% -12.9% Debt term (yr) 15.0 0% -11.5%	-10.6% -10.8% -11.1% 66.0% 10% -12.4% -12.7% -13.1% -13.4% -13.8% 16.5 10% -12.4%	-9.1% -9.3% -9.5% 72.0% 20% -13.2% -13.5% -13.9% -14.2% -14.6% 18.0 20% -16.0%	
440 484 528 Debt interest rate (%) 3.6% 4.1% 5.0% 5.4% Debt interest rate (%) 3.6% 4.1%	0% 10% 20% -20% -10% 0% 10% 20% -20% -10%	-16.5% -16.9% -17.3% 48.0% -20% -9.8% -10.1% -10.1% -10.4% -10.7% -11.1% 12.0 -20% -20% -8.9% -9.2%	-14.2% -14.5% -14.8% -14.8% -10.7% -10.7% -11.0% -11.4% -11.7% -12.0% -13.5 -10% -9.4% -9.7%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0% 0% -11.5% -11.9% -12.6% -12.6% -12.9% Debt term (yr) 15.0 0% -11.5% -11.9%	-10.6% -10.8% -11.1% -11.1% -12.4% -12.7% -13.1% -13.4% -13.8% -13.8% -13.8% -13.8% -12.9%	-9.1% -9.3% -9.5% 72.0% 20% -13.2% -13.5% -13.9% -14.2% -14.6% 18.0 20% -16.0% -16.5%	
440 484 528 Debt interest rate (%) 3.6% 4.1% 5.0% 5.4% Debt interest rate (%) 3.6%	0% 10% 20% -20% -10% 0% 10% 20%	-16.5% -16.9% -17.3% -17.3% -20% -20% -9.8% -10.1% -10.4% -10.7% -11.1% -12.0 -20% -8.9%	-14.2% -14.5% -14.8% -14.8% -10% -10.7% -10.7% -11.0% -11.4% -11.7% -12.0% 13.5 -10% -9.4%	-12.2% -12.5% -12.8% Debt ratio (%) 60.0% 0% -11.5% -11.9% -12.2% -12.6% -12.9% Debt term (yr) 15.0 0% -11.5%	-10.6% -10.8% -11.1% 66.0% 10% -12.4% -12.7% -13.1% -13.4% -13.8% 16.5 10% -12.4%	-9.1% -9.3% -9.5% 72.0% 20% -13.2% -13.5% -13.9% -14.2% -14.6% 18.0 20% -16.0%	

Version 3.2

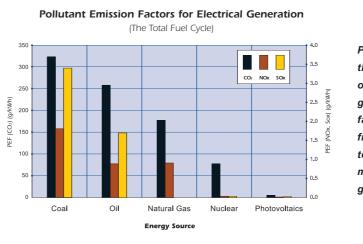
© Minister of Natural Resources Canada 1997 - 2005.

C.2.

Photovoltaic Project Data Option 2

Thinking Integrated. Building Integrated.

Sustainable Roofing Solutions Made Easy Today


usinesses today face the challenge of cutting costs and improving efficiencies while making a profit in a sustainable manner. Solar Integrated's low slope photovoltaic roofing products are designed to address this challenge. The product integrates a durable, low maintenance, waterproof membrane with lightweight, thin-film photovoltaic cells. The result is a roofing system that produces clean power while protecting the building's interior, improving the building's efficiency and reducing utility and maintenance bills. Not only can customers save money by offsetting the most expensive peak power, but often times can get credit for feeding excess solar power into the local electrical grid.

In addition to providing a superior product, Solar Integrated delivers a total solution making it easy to get a hasslefree sustainable roofing system. Based on an initial audit of your facility, our qualified sales people will make

customized roofing recommendations, as well as advise you on financing options, utility rebates and tax incentive programs. With a certified ISO 9001 quality management system in place, our engineers will custom design, manufacture and install a system that meets your exact needs. And with a commitment to our customers that is second to none, we back up every system with a 20-year warranty and extensive maintenance package that

enhances and extends the life of any new or existing roof. From routine inspections and optional 24/7 emergency response care; to real-time internet-based system monitoring—Solar Integrated will take care of you and your roofing investment over the long run. If you are looking to replace or build a new roof or planning a LEED certified green building, consider a photovoltaic roofing system

and save money.

Case Study: Coca-Cola

Coca-Cola turned to Solar Integrated to transform its roofing needs into an opportunity to embrace green energy and significantly offset utility costs in the process. Solar Integrated installed a 329 kW photovoltaic roofing system that significantly decreases Coca-Cola's peak electricity expenditure while reducing on-going roof maintenance costs. This initial project led to multiple solar roofing installations on other Coca-Cola facilities in the Los Angeles area.

Photovoltaics are the cleanest form of electricity generation when all factors are considered from fuel extraction to equipment manufacturing to generation.

Audit/Feasibility Study

Financing

System Engineering

Manufacturing

Installation

Maintenance

Warranty

Savings

Easy to Install & Maintain

Lightweight

S

T

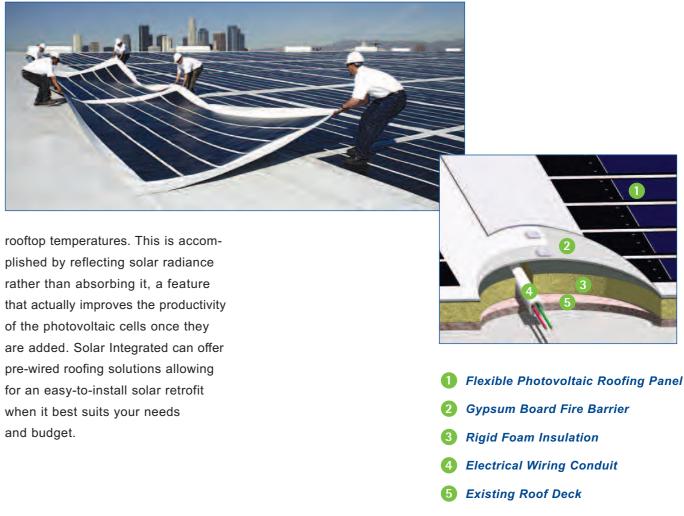
Rugged & Durable

T

Weather-tight

Ø

Tailored Solution


Ø

20-Year Warranty

nvironmentally friendly, durable roofing products are an important part of sustainable construction. Solar Integrated has combined a single-ply roofing membrane under the EPA's ENERGY STAR® program with the most advanced amorphous silicon photovoltaic cells. The result is an integrated, efficient, flexible photovoltaic roofing panel that rolls onto low slope surfaces.

Solar Integrated starts with the existing roof top surface and adds rigid insulation and gypsum board that provides resistance against punctures and a Class-A fire rating. The roof is also topped with a durable white membrane. These three components provide customers with an energy efficient, weather-tight roof that significantly improves the thermal performance of the roof and reduces energy consumption by lowering the

Rugged Roofing Designed and Built to Last

Case Study: ProLogis

Solar Integrated is working with ProLogis, a leading global provider of distribution facilities and services, to install one of the largest solar projects in France. ProLogis has pledged to make its 2.7 million square-foot distribution center near Paris in Moissy-Cramayel, France, one of the most environmentally-friendly distribution centers in the world. Solar Integrated installed a 446 kW photovoltaic roofing system on one of the center's warehouses.

The project was completed in less than three months and the customer is very pleased with the finished product and quality of workmanship.

Case Study: San Diego Schools

At Solar Integrated, we are working with the San Diego City Schools (SDCS) to achieve their green campus goals by installing several megawatts of solar power on dozens of campuses. These systems generate clean electricity, reduce operating costs, and enable SDCS managers to predict future utility bills. Solar Integrated is also working with SDCS teachers to turn their roofs into educational tools. Using the interactive Renewable Energy Management tool, students can gather real-time solar production data from their school rooftops and translate this information into easy to understand facts and figures.

Generating Electricity for the Long Run

Thin, lightweight PV technology combined with a flexible singleply roofing membrane makes our roofing system extremely durable and easy-to-install. ntil the introduction of Solar Integrated's photovoltaic roofing product, the installation of solar panels on large area low slope roofs was limited due to the heavy weight of traditional rigid crystalline panels and the related racks and roof penetrations required to secure these panels. The Solar Integrated photovoltaic roofing system addresses this problem in the following ways:

Lightweight

The Solar Integrated photovoltaic panel is the lightest in the industry, weighing only 12 ounces per square foot, allowing for installation on existing facilities without exceeding roof loading limits. Typical installations range from 50 kW to 1 MW.

More Powerful

The amorphous silicon panels enable maximum kilowatt-hour output, producing electricity using a wider spectrum of light than traditional crystalline technology. This feature enables optimum electricity production, even when it is cloudy.

Easy to Install

The attractive flexible photovoltaic roof literally rolls right on. Solar Integrated employs highly skilled professionals who consistently receive customer commendations for quality workmanship.

Rugged and Durable

Durability, to cope with challenging weather conditions, and stability, to handle changing light and shade conditions, have been built into all photovoltaic roofing products.

The Renewable Energy Management (REM) System.

Manage and Predict Power Costs

By using an internet-based proprietary Renewable Energy Management (REM) system customers can access enterprise-wide, real-time energy data from rooftops and transform it into valuable, useable knowledge, offset peak electricity and stabilize utility bills.

Attractive Appearance

Our unique electrical engineering integrates the solar array within the roofing assembly providing a neat and uncluttered roof surface.

Challenger Middle School Bethune Elementary Eugene Brucker Education Center Jackson Elementary Juarez Elementary Lewis Junior High Mason Elementary Sequoia Elementary Serra High

Flexible Solar Panels

High Power Output

Predictable Power Costs

Energy Security

Renewable Green Power

Real-time Energy Data

Leveraging 80 years of roofing experience, we've got you covered

Solar Integrated has its roots in the commercial roofing industry. Over the past 80 years, the Company has evolved from a traditional industrial roofing supplier into the leading provider of Building Integrated Photovoltaic (BIPV) roofing systems. Solar Integrated's unique approach to the renewable energy market enables it to stand out from the competition by supplying a product that produces clean renewable energy, while offering a durable industrial-grade roof. Solar Integrated has developed a proprietary process to combine lightweight, thin-film photovoltaic (PV) cells and heavy-duty industrial fabrics. The result is an integrated solar panel that can be installed on virtually any flat or low slope surface. In addition to roofing products, the company also develops portable and mobile solar applications.

Solar Integrated is headquartered in California with offices in New Jersey, Nevada, Arizona, Washington, Canada and Germany, with BIPV manufacturing in Los Angeles.

Solar Roofing Solutions

Portable Solar Solutions

Corporate Headquarters

Solar Integrated

1837 E. Martin Luther King Jr. Blvd. Los Angeles, California, USA 90058 Toll Free: +1.888.765.3649 T +1.323.231.0411

- F +1.323.231.0517
- E sales@solarintegrated.com

European Regional Office

Solar Integrated Galileo-Galilei-Strasse 26 55129 Mainz, Germany T +49.6131.33.363.2000 F +49.6131.33.363.2099 E sales@solarintegrated.de

SI816G1Product Information

Solar Panels: Built to Last and Generate Reliable Power

Overview

Ideal for new construction or rooftop replacements, shade structures and solar tents, Solar Integrated's building integrated photovoltaic (BIPV) solar panel is a unique product designed for multiple solar applications. The SI816G1, engineered as a weather-tight solar panel, combines low maintenance industrial fabrics with UNI-SOLAR lightweight, amorphous PV cells. The result is a flexible durable solar panel that can be installed on virtually any low slope surface.

Until the introduction of Solar Integrated's BIPV products, the installation of solar panels on industrial rooftops, shade structures or tents was limited due to the heavy weight of rigid crystalline panels. The lightweight Solar Integrated products eliminate this issue and allow virtually any structure to generate electricity.

Key Product Features

- Lightweight The solar panel is the lightest in the industry, weighing only 12 ounces per square foot.
- Rugged and durable Durability to cope with challenging weather conditions and stability to handle changing light and shade conditions are built into our BIPV products. In addition, unlike crystalline panels, our systems incorporate bypass technology enabling power production even when damaged.
- Powerful Amorphous silicon panels enable maximum kilowatt-hour output, producing electricity using a wider spectrum of light than traditional crystalline technology. This feature enables optimum electricity production, even when it is cloudy.
- **Reduced Silicon** While 94% of all solar panels require silicon as a raw ingredient, amorphous silicon uses silane gas and not purified silicon. Therefore, the technology is not effected by the raw silicon shortages.

SI816G1 Electrical Specifications

Power (Pmax) (Watts)	816.0
PTC Power (Pmax PTC) (Watts) ¹	772.4
Operating Voltage (Vmax) (Volts)	198.0
Operating Current (Imax) (Amp)	4.13
Open Circuit Voltage (Voc) (Volts)	277.2
Short Circuit Current (Isc) (Amp)	5.1
Maximum System Voltage (Volts)	600.0
Voc (-10C CellT @ 1.25 sun) (Volts)	316.2
Isc (75C CellT @ 1.25 sun) (Amp)	6.7
Series Fuse Rating (Amp)	8.0
Blocking Diode Rating (Amp)	8.0

SI816G1 Physical Specifications

Length (ft)	20.0
Length (mm)	6096.0
Width (ft)	10.0
Width (mm)	3050.0
Thickness (in)	0.12
Thickness (mm)	3.05
Weight (lb)	147.73
Weight (kg)	67.0

¹ Also available in double panels (1632 watts). Multiple single and double panels are configurable to virtually any output requirements.

Electrical and Safety Certifications and Listings

The Solar Integrated SI816G1 solar panel is certified to the following standards:

- Certified to UL 1703 standard
- IECEE CB-FCS
- Class A Fire Rating

Endurance Tested

Solar Integrated's BIPV products have passed UL, IEC and TUV tests for accelerated aging, electrical safety, weather resistance, thermal shock, hail impact and humidity and freeze cycling.

Leveraging Over 80 Years of Roofing Experience, We've Got You Covered!

Solar Integrated is a leading provider of BIPV products for multiple applications. Contact us for a free layout design of a solar rooftop or shade structure or get a quote for a solar tent. Our team will design a customized system using multiple panels, configured for maximum coverage and electricity output. Go to our website at www.solarintegrated.com and fill in our Is Solar Right for You? on-line questionnaire.

Solar Integrated 1837 East Martin Luther King Jr. Blvd. Los Angeles, California, USA 90058 Tel: +1.323.231.0411 Toll Free: +1.888.765.3649 Fax: +1.323.231.0517 Email: sales@solarintegrated.com Thinking Integrated. Building Integrated.

www.solarintegrated.com