## SECTION 1525

**HIGH-VELOCITY HURRICANE ZONES—UNIFORM PERMIT APPLICATION**

High-Velocity Hurricane Zone Uniform Permit Application Form

### INSTRUCTION PAGE

COMPLETE THE NECESSARY SECTIONS OF THE UNIFORM ROOFING PERMIT APPLICATION FORM AND ATTACH THE REQUIRED DOCUMENTS AS NOTED BELOW:

<table>
<thead>
<tr>
<th>Roof System</th>
<th>Required Sections of the Permit Application Form</th>
<th>Attachments Required See List Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Slope Application</td>
<td>A, B, C</td>
<td>1, 2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Prescriptive BUR-RAS 150</td>
<td>A, B, C</td>
<td>4, 5, 6, 7</td>
</tr>
<tr>
<td>Asphalitic Shingles</td>
<td>A, B, D</td>
<td>1, 2, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Concrete or Clay Tile</td>
<td>A, B, D, E</td>
<td>1, 2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Metal Roofs</td>
<td>A, B, D</td>
<td>1, 2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Wood Shingles and Shakes</td>
<td>A, B, D</td>
<td>1, 2, 4, 5, 6, 7</td>
</tr>
<tr>
<td>Other</td>
<td>As Applicable</td>
<td>1, 2, 3, 4, 5, 6, 7</td>
</tr>
</tbody>
</table>

### ATTACHMENTS REQUIRED:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fire Directory Listing Page</td>
</tr>
</tbody>
</table>
| 2. | From Product Approval:  
   Front Page  
   Specific System Description  
   Specific System Limitations  
   General Limitations  
   Applicable Detail Drawings |
| 3. | Design Calculations per Chapter 16, or if applicable, RAS 127 or RAS 128 |
| 4. | Other Component of Product Approval |
| 5. | Municipal Permit Application |
| 6. | Owners Notification for Roofing Considerations (Reroofing Only) |
| 7. | Any Required Roof Testing/Calculation Documentation |
High-Velocity Hurricane Zone Uniform Permit Application Form

Section A (General Information)

Master Permit No. ________________________________  Process No. __________________

Contractor’s Name _______________________________________________________________

Job Address ________________________________________________________________

Section B (Roof Plan)

Sketch Roof Plan: Illustrate all levels and sections, roof drains, scuppers, overflow scuppers and overflow drains. Include dimensions of sections and levels, clearly identify dimensions of elevated pressure zones and location of parapets.
High-Velocity Hurricane Zone Uniform Permit Application Form

Section C (Low Slope Application)
Fill in specific roof assembly components and identify manufacturer
(If a component is not used, identify as “NA”)
System Manufacturer: ________________________________
Product Approval No.: ________________________________
Design Wind Pressures, From RAS 128 or Calculations:
P1: ___________ P2: ___________ P3: ___________
Max. Design Pressure, from the specific product approval system: ________________________________
Deck:
Type: ________________________________
Gauge/Thickness: ________________________________
Slope: ________________________________
Anchor/Base Sheet & No. of Ply(s): ________________________________
Anchor/Base Sheet Fastener/Bonding Material: ________________________________
Insulation Base Layer: ________________________________
Base Insulation Size and Thickness: ________________________________
Base Insulation Fastener/Bonding Material: ________________________________
Top Insulation Layer: ________________________________
Top Insulation Size and Thickness: ________________________________
Top Insulation Fastener/Bonding Material: ________________________________
Base Sheet(s) & No. of Ply(s): ________________________________
Base Sheet Fastener/Bonding Material: ________________________________
Ply Sheet(s) & No. of Ply(s): ________________________________
Ply Sheet Fastener/Bonding Material: ________________________________
Top Ply: ________________________________
Top Ply Fastener/Bonding Material: ________________________________
Surfacing: ________________________________
Fastener Spacing for Anchor/Base Sheet Attachment:
Field: _____ ” oc @ Lap, # Rows _____ @ _____” oc
Perimeter: _____ ” oc @ Lap, # Rows _____ @ _____” oc
Corner: _____ ” oc @ Lap, # Rows _____ @ _____” oc
Number of Fasteners Per Insulation Board:
Field _____ Perimeter _____ Corner _____
Illustrate Components Noted and Details as Applicable:
Woodblocking, Gutter, Edge Termination, Stripping, Flashing, Continuous Cleat, Cant Strip, Base Flashing, Counterflash, Coping, Etc.
Indicate: Mean Roof Height, Parapet Height, Height of Base Flashing, Component Material, Material Thickness, Fastener Type, Fastener Spacing or Submit Manufacturers Details that Comply with RAS 111 and Chapter 16.

Parapet Height

Mean Roof Height

FT.
Section D (Steep Sloped Roof System)

Roof System Manufacturer: ________________________________________________________________

Notice of Acceptance Number: _________________________________________________________________________

Minimum Design Wind Pressures, If Applicable (From RAS 127 or Calculations):
    P1: _____________          P1: _____________          P1: _____________

Roof Slope: _______ : 12

Deck Type: ________________________________________________________________

Type Underlayment: ____________________________________________________________

Insulation: ________________________________________________________________

Fire Barrier: ________________________________________________________________

Ridge Ventilation? ________________________________

Fastener Type & Spacing: _______________________________________________________

Adhesive Type: ________________________________________________________________

Type Cap Sheet: ________________________________________________________________

Mean Roof Height: ____________

Roof Covering: ________________________________________________________________

Type & Size Drip Edge: ____________________________________________________________
Section E (Tile Calculations)

For Moment based tile systems, choose either Method 1 or 2. Compare the values for \( M_r \) with the values from \( M_f \). If the \( M_f \) values are greater than or equal to the \( M_r \) values, for each area of the roof, then the tile attachment method is acceptable.

**Method 1 “Moment Based Tile Calculations Per RAS 127”**

\[
(P1: \text{____} \times \lambda \text{____} = \text{____} - \text{Mg:____} = M_{r1} \text{____} \text{ Product Approval } M_{f \text{____}})
\]

\[
(P2: \text{____} \times \lambda \text{____} = \text{____} - \text{Mg:____} = M_{r2} \text{____} \text{ Product Approval } M_{f \text{____}})
\]

\[
(P3: \text{____} \times \lambda \text{____} = \text{____} - \text{Mg:____} = M_{r3} \text{____} \text{ Product Approval } M_{f \text{____}})
\]

**Method 2 “Simplified Tile Calculations Per Table Below”**

Required Moment of Resistance (\( M_r \)) From Table Below _______ Product Approval \( M_{f \text{____}} \)

<table>
<thead>
<tr>
<th>Mean Roof Height (H)</th>
<th>15’</th>
<th>20’</th>
<th>25’</th>
<th>30’</th>
<th>40’</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:12</td>
<td>34.4</td>
<td>36.5</td>
<td>38.2</td>
<td>39.7</td>
<td>42.2</td>
</tr>
<tr>
<td>3:12</td>
<td>32.2</td>
<td>34.4</td>
<td>36.0</td>
<td>37.4</td>
<td>39.8</td>
</tr>
<tr>
<td>4:12</td>
<td>30.4</td>
<td>32.2</td>
<td>33.8</td>
<td>35.1</td>
<td>37.3</td>
</tr>
<tr>
<td>5:12</td>
<td>28.4</td>
<td>30.1</td>
<td>31.6</td>
<td>32.8</td>
<td>34.9</td>
</tr>
<tr>
<td>6:12</td>
<td>26.4</td>
<td>28.0</td>
<td>29.4</td>
<td>30.5</td>
<td>32.4</td>
</tr>
<tr>
<td>7:12</td>
<td>24.4</td>
<td>25.9</td>
<td>27.1</td>
<td>28.2</td>
<td>30.0</td>
</tr>
</tbody>
</table>

*Must be used in conjunction with a list of moment based tile systems endorsed by the Broward County Board of Rules and Appeals.

For Uplift based tile systems use Method 3. Compare the values for \( F’ \) with the values for \( F_r \). If the \( F’ \) values are greater than or equal to the \( F_r \) values, for each area of the roof, then the tile attachment method is acceptable.

**Method 3 “Uplift Based Tile Calculations Per RAS 127”**

\[
(P1: \text{____} \times L \text{____} = \text{____} \times w: = \text{____} - W:____ \times \cos \Theta \text{____} = F_{r1} \text{____} \text{ Product Approval } F’ \text{____})
\]

\[
(P2: \text{____} \times L \text{____} = \text{____} \times w: = \text{____} - W:____ \times \cos \Theta \text{____} = F_{r2} \text{____} \text{ Product Approval } F’ \text{____})
\]

\[
(P3: \text{____} \times L \text{____} = \text{____} \times w: = \text{____} - W:____ \times \cos \Theta \text{____} = F_{r3} \text{____} \text{ Product Approval } F’ \text{____})
\]

**Where to Obtain Information**

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Where to find</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Pressure</td>
<td>P1 or P2 or P3</td>
<td>RAS 127 Table 1 or by an engineering analysis prepared by PE based on ASCE 7</td>
</tr>
<tr>
<td>Mean Roof Height</td>
<td>H</td>
<td>Job Site</td>
</tr>
<tr>
<td>Roof Slope</td>
<td>( \Theta )</td>
<td>Job Site</td>
</tr>
<tr>
<td>Aerodynamic Multiplier</td>
<td>( \lambda )</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Restoring Moment due to Gravity</td>
<td>( M_g )</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Attachment Resistance</td>
<td>( M_r )</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Required Moment Resistance</td>
<td>( M_r )</td>
<td>Calculated</td>
</tr>
<tr>
<td>Minimum Attachment Resistance</td>
<td>( F’ )</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Required Uplift Resistance</td>
<td>( F_r )</td>
<td>Calculated</td>
</tr>
<tr>
<td>Average Tile Weight</td>
<td>W</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Tile Dimensions</td>
<td>L = length W = width</td>
<td>Product Approval</td>
</tr>
</tbody>
</table>

All calculations must be submitted to the building official at the time of permit application.