SECTION 1525
HIGH-VELOCITY HURRICANE ZONES UNIFORM PERMIT APPLICATION
High-Velocity Hurricane Zone Uniform Permit Application Form.

INSTRUCTION PAGE

COMPLETE THE NECESSARY SECTIONS OF THE UNIFORM ROOFING PERMIT APPLICATION FORM AND ATTACH THE REQUIRED DOCUMENTS AS NOTED BELOW:

<table>
<thead>
<tr>
<th>Roof System</th>
<th>Required Sections of the Permit Application Form</th>
<th>Attachments Required See List Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Slope Application</td>
<td>A,B,C</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Prescriptive BUR-RAS 150</td>
<td>A,B,C</td>
<td>4,5,6,7</td>
</tr>
<tr>
<td>Asphalitic Shingles</td>
<td>A,B,D</td>
<td>1,2,4,5,6,7</td>
</tr>
<tr>
<td>Concrete or Clay Tile</td>
<td>A,B,D,E</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Metal Roofs</td>
<td>A,B,D</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Wood Shingles and Shakes</td>
<td>A,B,D</td>
<td>1,2,4,5,6,7</td>
</tr>
<tr>
<td>Other</td>
<td>As Applicable</td>
<td>1,2,3,4,5,6,7</td>
</tr>
</tbody>
</table>

ATTACHMENTS REQUIRED:

1. Fire Directory Listing Page
2. From Product Approval:
 Front Page
 Specific System Description
 Specific System Limitations
 General Limitations
 Applicable Detail Drawings
3. Design Calculations per Chapter 16, or If Applicable, RAS 127 or RAS 128
4. Other Component of Product Approval
5. Municipal Permit Application
6. Owners Notification for Roofing Considerations (Reroofing Only)
7. Any Required Roof Testing/Calculation Documentation
High-Velocity Hurricane Zone Uniform Permit Application Form.

Section A (General Information)

Master Permit No. ___________________________ Process No. ___________________________
Contractor’s Name __
Job Address ___

ROOF CATEGORY

☐ Low Slope ☐ Mechanically Fastened Tile ☐ Mortar/Adhesive Set Tile
☐ Asphalitic Shingles ☐ Metal Panel/Shingles ☐ Wood Shingles/Shakes
☐ Prescriptive BUR-RAS 150

ROOF TYPE

☐ New Roof ☐ Reroofing ☐ Recovering ☐ Repair ☐ Maintenance

ROOF SYSTEM INFORMATION

Low Slope Roof Area (SF) Steep Sloped Roof Area (SF) Total (SF)

Section B (Roof Plan)

Sketch Roof Plan: Illustrate all levels and sections, roof drains, scuppers, overflow scuppers and overflow drains. Include dimensions of sections and levels, clearly identify dimensions of elevated pressure zones and location of parapets.
Section C (Low Slope Application)

Fill in specific roof assembly components and identify manufacturer (If a component is not used, identify as “NA”)

System Manufacturer: ________________________________

Product Approval No.: ________________________________

Design Wind Pressures, From RAS 128 or Calculations:

\[P_{\text{max}1}: \quad P_{\text{max}2}: \quad P_{\text{max}3}: \]

Max. Design Pressure, from the specific Product Approval system: ___________________________________

Deck:
Type: ___

Gauge/Thickness: _______________________________

Slope: __

Anchor/Base Sheet & No. of Ply(s): __________________________

Anchor/Base Sheet Fastener/Bonding Material: ________________________________

Insulation Base Layer: ________________________________

Base Insulation Size and Thickness: __________________________ FT.

Base Insulation Fastener/Bonding Material: ________________________________

Top Insulation Layer: Parapet Height

Top Insulation Size and Thickness: __________________________ FT.

Top Insulation Fastener/Bonding Material: ________________________________

Base Sheet(s) & No. of Ply(s): __________________________

Base Sheet Fastener/Bonding Material: ________________________________

Ply Sheet(s) & No. of Ply(s): __________________________

Ply Sheet Fastener/Bonding Material: ________________________________

Top Ply: ________________________________

Top Ply Fastener/Bonding Material: ________________________________

Surfacing: ________________________________

Fastener Spacing for Anchor/Base Sheet Attachment:

Field: ____” oc @ Lap, # Rows ____ @ ____” oc

Perimeter: ____” oc @ Lap, # Rows ____ @ ____” oc

Corner: ____” oc @ Lap, # Rows ____ @ ____” oc

Number of Fasteners Per Insulation Board:

Field _____ Perimeter _____ Corner _____

Illustrate Components Noted and Details as Applicable:
Woodblocking, Gutter, Edge Termination, Stripping, Flashing, Continuous Cleat, Cant Strip, Base Flashing, Counter- Flashing, Coping, Etc.
Indicate: Mean Roof Height, Parapet Height, Height of Base Flashing, Component Material, Material Thickness, Fastener Type, Fastener Spacing or Submit Manufacturer's Details that Comply with RAS III and Chapter 16.

Section C (Low Slope Application)

Fill in specific roof assembly components and identify manufacturer (If a component is not used, identify as “NA”)

System Manufacturer: ________________________________

Product Approval No.: ________________________________

Design Wind Pressures, From RAS 128 or Calculations:

\[P_{\text{max}1}: \quad P_{\text{max}2}: \quad P_{\text{max}3}: \]

Max. Design Pressure, from the specific Product Approval system: ___________________________________

Deck:
Type: ___

Gauge/Thickness: _______________________________

Slope: __

Anchor/Base Sheet & No. of Ply(s): __________________________

Anchor/Base Sheet Fastener/Bonding Material: ________________________________

Insulation Base Layer: ________________________________

Base Insulation Size and Thickness: __________________________ FT.

Base Insulation Fastener/Bonding Material: ________________________________

Top Insulation Layer: Parapet Height

Top Insulation Size and Thickness: __________________________ FT.

Top Insulation Fastener/Bonding Material: ________________________________

Base Sheet(s) & No. of Ply(s): __________________________

Base Sheet Fastener/Bonding Material: ________________________________

Ply Sheet(s) & No. of Ply(s): __________________________

Ply Sheet Fastener/Bonding Material: ________________________________

Top Ply: ________________________________

Top Ply Fastener/Bonding Material: ________________________________

Surfacing: ________________________________

Fastener Spacing for Anchor/Base Sheet Attachment:

Field: ____” oc @ Lap, # Rows ____ @ ____” oc

Perimeter: ____” oc @ Lap, # Rows ____ @ ____” oc

Corner: ____” oc @ Lap, # Rows ____ @ ____” oc

Number of Fasteners Per Insulation Board:

Field _____ Perimeter _____ Corner _____

Illustrate Components Noted and Details as Applicable:
Woodblocking, Gutter, Edge Termination, Stripping, Flashing, Continuous Cleat, Cant Strip, Base Flashing, Counter- Flashing, Coping, Etc.
Indicate: Mean Roof Height, Parapet Height, Height of Base Flashing, Component Material, Material Thickness, Fastener Type, Fastener Spacing or Submit Manufacturer's Details that Comply with RAS III and Chapter 16.

Section D (Steep Sloped Roof System)

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof System Manufacturer</td>
<td></td>
</tr>
<tr>
<td>Notice of Acceptance Number</td>
<td></td>
</tr>
<tr>
<td>Minimum Design Wind Pressures, If Applicable (From RAS 127 or Calculations):</td>
<td>P1: ____________ P2: ___________ P3: ___________</td>
</tr>
<tr>
<td>Roof Slope:</td>
<td>_____: 12</td>
</tr>
<tr>
<td>Ridge Ventilation?</td>
<td></td>
</tr>
<tr>
<td>Mean Roof Height:</td>
<td></td>
</tr>
<tr>
<td>Deck Type:</td>
<td></td>
</tr>
<tr>
<td>Type Underlayment:</td>
<td></td>
</tr>
<tr>
<td>Insulation:</td>
<td></td>
</tr>
<tr>
<td>Fire Barrier:</td>
<td></td>
</tr>
<tr>
<td>Fastener Type & Spacing:</td>
<td></td>
</tr>
<tr>
<td>Adhesive Type:</td>
<td></td>
</tr>
<tr>
<td>Type Cap Sheet:</td>
<td></td>
</tr>
<tr>
<td>Roof Covering:</td>
<td></td>
</tr>
<tr>
<td>Type & Size Drip Edge:</td>
<td></td>
</tr>
</tbody>
</table>
Section E (Tile Calculations)

For Moment based tile systems, choose either Method 1 or 2. Compare the values for Mr with the values from Mf. If the Mf values are greater than or equal to the Mr values, for each area of the roof, then the tile attachment method is acceptable.

Method 1 “Moment Based Tile Calculations Per RAS 127”

\[
(P_1: \frac{L}{\lambda} \times w = \text{______}) \times W \times \cos \theta = F_{r1} \text{ Product Approval Mf} \\
(P_2: \frac{L}{\lambda} \times w = \text{______}) \times W \times \cos \theta = F_{r2} \text{ Product Approval Mf} \\
(P_3: \frac{L}{\lambda} \times w = \text{______}) \times W \times \cos \theta = F_{r3} \text{ Product Approval Mf}
\]

Method 2 “Simplified Tile Calculations Per Table Below”

Required Moment of Resistance (Mr) From Table Below Product Approval Mf

<table>
<thead>
<tr>
<th>Mean Roof Height</th>
<th>15’</th>
<th>20’</th>
<th>25’</th>
<th>30’</th>
<th>40’</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:12</td>
<td>34.4</td>
<td>36.5</td>
<td>38.2</td>
<td>39.7</td>
<td>42.2</td>
</tr>
<tr>
<td>3:12</td>
<td>32.2</td>
<td>34.4</td>
<td>36.0</td>
<td>37.4</td>
<td>39.8</td>
</tr>
<tr>
<td>4:12</td>
<td>30.4</td>
<td>32.2</td>
<td>33.8</td>
<td>35.1</td>
<td>37.3</td>
</tr>
<tr>
<td>5:12</td>
<td>28.4</td>
<td>30.1</td>
<td>31.6</td>
<td>32.8</td>
<td>34.9</td>
</tr>
<tr>
<td>6:12</td>
<td>26.4</td>
<td>28.0</td>
<td>29.4</td>
<td>30.5</td>
<td>32.4</td>
</tr>
<tr>
<td>7:12</td>
<td>24.4</td>
<td>25.9</td>
<td>27.1</td>
<td>28.2</td>
<td>30.0</td>
</tr>
</tbody>
</table>

*Must be used in conjunction with a list of moment based tile systems endorsed by the Broward County Board of Rules and Appeals.

For Uplift based tile systems use Method 3. Compared the values for F’ with the values for Fr. If the F’ values are greater than or equal to the Fr values, for each area of the roof, then the tile attachment method is acceptable.

Method 3 “Moment Based Tile Calculations Per RAS 127”

\[
(P_1: \frac{L}{\lambda} \times w = \text{______}) \times W \times \cos \theta = F_{r1} \text{ Product Approval F’} \\
(P_2: \frac{L}{\lambda} \times w = \text{______}) \times W \times \cos \theta = F_{r2} \text{ Product Approval F’} \\
(P_3: \frac{L}{\lambda} \times w = \text{______}) \times W \times \cos \theta = F_{r3} \text{ Product Approval F’}
\]

Where to Obtain Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Where to find</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Pressure</td>
<td>P1 or P2 or P3</td>
<td>RAS 127 Table 1 or by an engineering analysis prepared by PE based on ASCE 7</td>
</tr>
<tr>
<td>Mean Roof Height</td>
<td>H</td>
<td>Job Site</td>
</tr>
<tr>
<td>Roof Slope</td>
<td>(\theta)</td>
<td>Job Site</td>
</tr>
<tr>
<td>Aerodynamic Multiplier</td>
<td>(\lambda)</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Restoring Moment due to Gravity</td>
<td>(M_g)</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Attachment Resistance</td>
<td>(M_f)</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Required Moment Resistance</td>
<td>(M_e)</td>
<td>Calculated</td>
</tr>
<tr>
<td>Minimum Attachment Resistance</td>
<td>F’</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Required Uplift Resistance</td>
<td>Fr</td>
<td>Calculated</td>
</tr>
<tr>
<td>Average Tile Weight</td>
<td>W</td>
<td>Product Approval</td>
</tr>
<tr>
<td>Tile Dimensions</td>
<td>L = length Width W = width</td>
<td>Product Approval</td>
</tr>
</tbody>
</table>

All calculations must be submitted to the building official at the time of permit application.