Residential

Broward County Edition
Loose-leaf Supplement

File removed pages for reference.

Residential - Remove Old Pages
Chapter 29 - Page 29.3-29.4
Chapter 42 – Page 42.7 – 42.8

Residential - Insert New Pages
Chapter 29 - Page 29.3-29.4
Chapter 42 – Page 42.7 – 42.8

Highlight of changes:

1. Modifications to Section Table P2903.2
2. Modifications to Section E4206.4.2 (New Section E4206.2.1)
critical level of the breakers and assemblies shall be located at not less than 1 inch (25 mm) above the flood level rim.

P2902.4.3 Hose connection. Sillcocks, hose bibbs, wall hydrants and other openings with a hose connection shall be protected by an atmospheric-type or pressure-type vacuum breaker or a permanently attached hose connection vacuum breaker.

Exceptions:

1. This section shall not apply to water heater and boiler drain valves that are provided with hose connection threads and that are intended only for tank or vessel draining.

2. This section shall not apply to water supply valves intended for connection of clothes washing machines where backflow prevention is otherwise provided or is integral with the machine.

P2902.5 Protection of potable water connections. Connections to the potable water shall conform to Sections P2902.5.1 through P2902.5.5.

P2902.5.1 Connections to boilers. The potable supply to the boiler shall be equipped with a backflow preventer with an intermediate atmospheric vent complying with ASSE 1012 or CSA B64.3. Where conditioning chemicals are introduced into the system, the potable water connection shall be protected by an air gap or a reduced pressure principle backflow preventer complying with ASSE 1013, CSA B64.4 or AWWA C511.

P2902.5.2 Heat exchangers. Heat exchangers using an essentially toxic transfer fluid shall be separated from the potable water by double-wall construction. An air gap open to the atmosphere shall be provided between the two walls. Heat exchangers utilizing an essentially nontoxic transfer fluid shall be permitted to be of single-wall construction.

P2902.5.3 Lawn irrigation systems. The potable water supply to lawn irrigation systems shall be protected against backflow by an atmospheric vacuum breaker, a pressure vacuum breaker assembly or a reduced pressure principle backflow prevention assembly. Valves shall not be installed downstream from an atmospheric vacuum breaker. Where chemicals are introduced into the system, the potable water supply shall be protected against backflow by a reduced pressure principle backflow prevention assembly.

P2902.5.4 Connections to automatic fire sprinkler systems. The potable water supply to automatic fire sprinkler shall be protected against backflow by a double check backflow prevention assembly, a double check fire protection backflow prevention assembly, a reduced pressure principle backflow prevention assembly or a reduced pressure principle fire protection backflow prevention assembly.

Exception: Where systems are installed as a portion of the water distribution system in accordance with the requirements of this code and are not provided with a fire department connection, backflow protection for the water supply system shall not be required.

P2902.5.4.1 Additives or nonpotable source. Where systems contain chemical additives or antifreeze, or where systems are connected to a nonpotable secondary water supply, the potable water supply shall be protected against backflow by a reduced pressure principle backflow prevention assembly or a reduced pressure principle fire protection backflow prevention assembly. Where chemical additives or antifreeze is added to only a portion of an automatic fire sprinkler or standpipe system, the reduced pressure principle fire protection backflow preventer shall be permitted to be located so as to isolate that portion of the system.

P2902.5.5 Solar systems. The potable water supply to a solar system shall be equipped with a backflow preventer with intermediate atmospheric vent complying with ASSE 1012 or a reduced pressure principle backflow preventer complying with ASSE 1013. Where chemicals are used, the potable water supply shall be protected by a reduced pressure principle backflow preventer.

Exception: Where all solar system piping is a part of the potable water distribution system, in accordance with the requirements of the Florida Building Code, Plumbing, and all components of the piping system are listed for potable water use, cross-connection protection measures shall not be required.

P2902.6 Location of backflow preventers. Access shall be provided to backflow preventers as specified by the manufacturer’s installation instructions.

P2902.6.1 Outdoor enclosures for backflow prevention devices. Outdoor enclosures for backflow prevention devices shall comply with ASSE 1060.

P2902.6.2 Protection of backflow preventers. Backflow preventers shall not be located in areas subject to freezing except where they can be removed by means of unions, or are protected by heat, insulation or both.

P2902.6.3 Relief port piping. The termination of the piping from the relief port or air gap fitting of the backflow preventer shall discharge to an approved indirect waste receptor or to the outdoors where it will not cause damage or create a nuisance.

SECTION P2903
WATER-SUPPLY SYSTEM

P2903.1 Water supply system design criteria. The water service and water distribution systems shall be designed and pipe sizes shall be selected such that under conditions of peak demand, the capacities at the point of outlet discharge shall not be less than shown in Table P2903.1.

P2903.2 Maximum flow and water consumption. The maximum water consumption flow rates and quantities for all plumbing fixtures and fixture fittings shall be in accordance with Table P2903.2.
WATER SUPPLY AND DISTRIBUTION

TABLE P2903.1
REQUIRED CAPACITIES AT POINT OF OUTLET DISCHARGE

<table>
<thead>
<tr>
<th>FIXTURE AT POINT OF OUTLET</th>
<th>FLOW RATE (gpm)</th>
<th>FLOW PRESSURE (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathtub, pressure-balanced or thermostat mixing valve</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Bidet, thermostat mixing</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Dishwasher</td>
<td>2.75</td>
<td>8</td>
</tr>
<tr>
<td>Laundry tub</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Lavatory</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Shower, pressure-balancing or thermostat mixing valve</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Sillcock, hose bibb</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Sink</td>
<td>2.5</td>
<td>8</td>
</tr>
<tr>
<td>Water closet, flushometer tank</td>
<td>1.6</td>
<td>20</td>
</tr>
<tr>
<td>Water closet, tank, close coupled</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Water closet, tank, one-piece</td>
<td>6</td>
<td>20</td>
</tr>
</tbody>
</table>

For SI: 1 gallon per minute = 3.785 L/min.
1 pound per square inch = 6.895 kPa.

TABLE P2903.2
MAXIMUM FLOW RATES AND CONSUMPTION FOR PLUMBING FIXTURES AND FIXTURE FITTINGS b AND APPLIANCES

<table>
<thead>
<tr>
<th>PLUMBING FIXTURE OR FIXTURE FITTING</th>
<th>PLUMBING FIXTURE OR FIXTURE FITTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavatory faucet</td>
<td>2-2-1.5 gpm at 60 psi</td>
</tr>
<tr>
<td>Shower head a</td>
<td>2-2-0.2-2 gpm at 80 psi</td>
</tr>
<tr>
<td>Sink faucet</td>
<td>2.2 gpm at 60 psi</td>
</tr>
<tr>
<td>Water Closet</td>
<td>1-6-1.28 gallons per flushing cycle</td>
</tr>
<tr>
<td>Dishwasher (residential)</td>
<td>6.5 gallons per cycle or less (Energy Star/Watersense Certified)(c)</td>
</tr>
<tr>
<td>Washing Machine</td>
<td>Water factor of 8 or lower (Energy Star/Watersense Certified)(c)</td>
</tr>
</tbody>
</table>

For SI: 1 gallon per minute = 3.785 L/min.
1 pound per square inch = 6.895 kPa.

a. A handheld shower spray is also a shower head
b. Consumption tolerances shall be determined from referenced standards
c. Water factor in gallons per cycle per cubic foot

Exception: All fixtures, fittings and appliances with U.S Environmental Agency WaterSense®(EPA) Label

P2903.3 Minimum pressure. The static water pressure (as determined by the local water authority) at the building entrance for either public or private water service shall be not less than 40 psi (276 kPa).

P2903.4.2 Backflow prevention device or check valve. Where a backflow prevention device, check valve or other device is installed on a water supply system using storage water heating equipment such that thermal expansion causes an increase in pressure, a device for controlling pressure shall be installed.

P2903.5 Water hammer. The flow velocity of the water distribution system shall be controlled to reduce the possibility of water hammer. Water-hammer arrestors shall be installed in accordance with the manufacturer’s installation instructions. Water hammer arrestors shall conform to ASSE 1010.

P2903.6 Determining water-supply fixture units. Supply loads in the building water distribution system shall be determined by total load on the pipe being sized, in terms of water-supply fixture units (w.s.f.u.), as shown in Table P2903.6, and gallon per minute (gpm) flow rates [see Table P2903.6(1)]. For fixtures not listed, choose a w.s.f.u. value of a fixture with similar flow characteristics.

P2903.7 Size of water-service mains, branch mains and risers. The size of the water service pipe shall be not less than 3/4 inch (19 mm) diameter. The size of water service mains, branch mains and risers shall be determined according to water supply demand [gpm (L/m)], available water pressure [psi (kPa)] and friction loss caused by the water meter and developed length of pipe [feet (m)], including equivalent length of fittings. The size of each water distribution system shall be determined according to design methods conforming to acceptable engineering practice, such as those methods in Appendix P and shall be approved by the code official.

P2903.8 Gridded and parallel water distribution system manifolds. Hot water and cold water manifolds installed with gridded or parallel-connected individual distribution lines to each fixture or fixture fittings shall be designed in accordance with Sections P2903.8.1 through P2903.8.6.

P2903.8.1 Sizing of manifolds. Manifolds shall be sized in accordance with Table P2903.8.1. Total gallons per minute is the demand for all outlets.

| TABLE P2903.8.1 MANIFOLD SIZING |
|-------------------------------|-----------------|-----------------|-----------------|
| PLASTIC | METALLIC |
| Nominal Size ID (inches) | Maximum* gpm | Nominal Size ID (inches) | Maximum* gpm |
| 3/4 | 17 | 3/4 | 11 |
| 1 | 29 | 1 | 20 |
| 1 1/4 | 46 | 1 1/4 | 31 |
| 1 1/2 | 66 | 1 1/2 | 44 |

For SI: 1 inch = 25.4 mm, 1 gallon per minute = 3.785 L/min.
1 foot per second = 0.3048 m/s.

Note: See Table P2903.6(1) for w.s.f.u. and Table P2903.6(1) for gallon-per-minute (gpm) flow rates.

a. Based on velocity limitation: plastic-12 fps; metal-8 fps.

Adopted: May 14, 2015
Effective: June 30, 2015

FLORIDA BUILDING CODE – RESIDENTIAL, 5TH EDITION(2014)
on solder shall not be used. Sheet metal screws shall not be used to connect bonding conductors or connection devices.

SECTION E4205
GROUNDING

E4205.1 Equipment to be grounded. The following equipment shall be grounded:

1. Through-wall lighting assemblies and underwater luminaires other than those low-voltage lighting products listed for the application without a grounding conductor.
2. All electrical equipment located within 5 feet (1524 mm) of the inside wall of the pool, spa or hot tub.
3. All electrical equipment associated with the recirculating system of the pool, spa or hot tub.
5. Transformer and power supply enclosures.
7. Panelboards that are not part of the service equipment and that supply any electrical equipment associated with the pool, spa or hot tub.

E4205.2 Luminaires and related equipment. Other than listed low-voltage luminaires not requiring grounding, all through-wall lighting assemblies, wet-niche, dry-niche, or no-niche luminaires shall be connected to an insulated copper equipment grounding conductor sized in accordance with Table E3908.12 but not smaller than 12 AWG. The equipment grounding conductor between the wiring chamber of the secondary winding of a transformer and a junction box shall be sized in accordance with the overcurrent device in such circuit. The junction box, transformer enclosure, or other enclosure in the supply circuit to a wet-niche or no-niche luminaire and the field-wiring chamber of a dry-niche luminaire shall be grounded to the equipment grounding terminal of the panelboard. The equipment grounding terminal shall be directly connected to the panelboard enclosure. The equipment grounding conductor shall be installed without joint or splice.

Exceptions:

1. Where more than one underwater luminaire is supplied by the same branch circuit, the equipment grounding conductor, installed between the junction boxes, transformer enclosures, or other enclosures in the supply circuit to wet-niche luminaires, or between the field-wiring compartments of dry-niche luminaires, shall be permitted to be terminated on grounding terminals.
2. Where an underwater luminaire is supplied from a transformer, ground-fault circuit-interrupter, clock-operated switch, or a manual snap switch that is located between the panelboard and a junction box connected to the conduit that extends directly to the underwater luminaire, the equipment grounding conductor shall be permitted to terminate on ground-

E4205.3 Nonmetallic conduit. Where a nonmetallic conduit is installed between a forming shell and a junction box, transformer enclosure, or other enclosure, a 8 AWG insulated copper bonding jumper shall be installed in this conduit except where a listed low-voltage lighting system not requiring grounding is used. The bonding jumper shall be terminated in the forming shell, junction box or transformer enclosure, or ground-fault circuit-interrupter enclosure. The termination of the 8 AWG bonding jumper in the forming shell shall be covered with, or encapsulated in, a listed potting compound to protect such connection from the possible deteriorating effect of pool water.

E4205.4 Flexible cords. Other than listed low-voltage lighting systems not requiring grounding, wet-niche luminaires that are supplied by a flexible cord or cable shall have all exposed noncurrent-carrying metal parts guarded by an insulated copper equipment grounding conductor that is an integral part of the cord or cable. This grounding conductor shall be connected to the grounding terminal in the supply junction box, transformer enclosure, or other enclosure. The grounding conductor shall not be smaller than the supply conductors and not smaller than 16 AWG.

E4205.5 Motors. Pool-associated motors shall be connected to an insulated copper equipment grounding conductor sized in accordance with Table E3908.12, but not smaller than 12 AWG. Where the branch circuit supplying the motor is installed in the interior of a one-family dwelling or in the interior of accessory buildings associated with a one-family dwelling, using a cable wiring method permitted by Table E4202.1, an uninsulated equipment grounding conductor shall be permitted provided that it is enclosed within the outer sheath of the cable assembly.

E4205.6 Feeders. An equipment grounding conductor shall be installed with the feeder conductors between the grounding terminal of the pool equipment panelboard and the grounding terminal of the applicable service equipment or source of a separately derived system. The equipment grounding conductor shall be insulated, shall be sized in accordance with Table E3908.12, and shall be not smaller than 12 AWG.

Exception: An existing feeder between an existing remote panelboard and service equipment shall be permitted to run in flexible metal conduit or an approved cable assembly that includes an equipment grounding conductor within its outer sheath. The equipment grounding conductor shall not be connected to the grounded conductor in the remote panelboard.

E4205.6.1 Separate buildings. A feeder to a separate building or structure shall be permitted to supply swimming pool equipment branch circuits, or feeders supplying swimming pool equipment branch circuits, provided that the grounding arrangements in the separate building meet the requirements of Section E3607.3. Where installed in other than existing feeders covered in the exception to
E4206.4.2 Luminaire location. Luminares mounted in walls shall be installed with the top of the fixture lens not less than 18 inches (457 mm) below the normal water level of the pool, except where the luminaire is listed and identified for use at a depth of not less than 4 inches (102 mm) below the normal water level of the pool. A luminaire facing upward shall have the lens adequately guarded to prevent contact by any person or shall be listed for use without a guard.

E4206.4.2.1 When underwater light fixtures are installed for swimming or bathing pools, these fixtures shall not exceed the following maximum output/performance standards:

1. 15 volts (RMS) for sinusoidal alternating current
2. 21.2 volts peak for nonsinusoidal alternating current
3. 30 volts continuous direct current
4. 12.4 volts peak for direct current that is interrupted at a rate of 10 to 200 Hertz
5. The maximum incandescent lamp size shall be 300 watts

E4206.5 Wet-niche luminaires. Forming shells shall be installed for the mounting of all wet-niche underwater luminaires and shall be equipped with provisions for conduit entries. Conduit shall extend from the forming shell to a suitable junction box or other enclosure located as provided in Section E4206.9. Metal parts of the luminaire and forming shell in contact with the pool water shall be of brass or other approved corrosion-resistant metal.

The end of flexible-cord jackets and flexible-cord conductor terminations within a luminaire shall be covered with, or encapsulated in, a suitable potting compound to prevent the entry of water into the luminaire through the cord or its conductors. If present, the grounding connection within a luminaire shall be similarly treated to protect such connection from the deteriorating effect of pool water in the event of water entry into the luminaire.

Luminaires shall be bonded to and secured to the forming shell by a positive locking device that ensures a low-resistance contact and requires a tool to remove the luminaire from the forming shell.

E4206.5.1 Servicing. All wet-niche luminaires shall be removable from the water for inspection, relamping, or other maintenance. The forming shell location and length of cord in the forming shell shall permit personnel to place the removed luminaire on the deck or other dry location for such maintenance. The luminaire maintenance location shall be accessible without entering or going into the pool water.

E4206.6 Dry-niche luminaires. Dry-niche luminaires shall have provisions for drainage of water. Other than listed low-voltage luminaires not requiring grounding, a dry-niche luminaire shall have means for accommodating one equipment grounding conductor for each conduit entry. Junction boxes shall not be required but, if used, shall not be required to be elevated or located as specified in Section E4206.9 if the luminaire is specifically identified for the purpose.

E4206.7 No-niche luminaires. No-niche luminaires shall be listed for the purpose and shall be installed in accordance with the requirements of Section E4206.5. Where connection