Your Florida Petroleum Storage Tank Facility Inspection Guide
This Compliance Assistance Guide for Petroleum Storage Tank Systems is prepared by the Broward County Environmental Protection and Growth Management Department Pollution Prevention Division Compliance Assistance Section for the Florida Department of Environmental Protection’s Division of Waste Management, Permitting and Compliance Assistance Program, Storage Tank Compliance, to assist owners and operators of storage tank systems with attaining and maintaining operational compliance with applicable rules and regulations.

Inclusion of specific equipment brands within this document is intended for information purposes only and does not constitute endorsement of these products. Certain images and photos herein are used with permission and courtesy of Broward County, the Florida Department of Environmental Protection, Source North America Corporation, Highland Tank & Manufacturing Co., Inc., and the Environmental Protection Agency.

For a list of FDEP approved Storage Tank System equipment, see: www.dep.state.fl.us/waste/categories/tanks/pages/equip.htm.

Esta publicación está disponible en español en la siguiente página web: www.dep.state.fl.us/waste/categories/tanks/default.htm.
Table of Contents

Storage Tank Systems Requirements ... 4

Underground Storage Tank Systems .. 5
 - Double-Walled Tanks with Release Detection Method or Device .. 6
 - Submersible Pump/Piping Sump and Components ... 7
 - Sump/Containment Cover; Line Leak Detector; Test Boot Fittings ... 8
 - Entry Boot Fitting for Double-Walled Piping .. 9
 - Fill/Spill Containment (Spill Bucket) and Components ... 9
 - Fill Caps; Spill Release Valve ... 9
 - Overfill Protection Valve or Method; Stage I Dry Break Poppet and Cap with Gasket 10
 - Underground Double-Walled Piping Assembly and Components ... 11
 - UST System Diagram .. 12

Aboveground Storage Tank Systems .. 13
 - Tank Assembly and Components ... 14
 - Double-Walled Tank with Release Detection Method or Components 14
 - Single-Walled Tank Inside Field Erected Secondary Containment or Dike 14
 - Pump/Piping Sump and Components; Fill/Spill Containment and Components 16
 - Overfill Protection Valve or Method; Fill Pipe with Cap ... 17
 - Release Valve; Stage I Dry Break Poppet and Cap with Gasket ... 18
 - Piping Assembly and Components .. 18
 - Line Leak Detector; Anti-Siphon Valve ... 19
 - AST System Diagram ... 20

Color Coding for Fill Port Covers ... 21

Dispenser Assembly and Components; Fuel Filters; Dispenser Islands 22
 - Emergency Shutoff or Shear Valve for Pressurized Piping .. 23
 - Electronic Leak Detection Sensor inside Dispenser Sump ... 23
 - Standard Dispenser Nozzles, Hoses and Appurtenances .. 24

Vent Lines Assembly and Components; P/V Vent Valves; Vent Lines - Manifold 25

Cathodic Protection Systems ... 26

Release Detection Systems ... 27

Internal Release Detection Systems .. 27

External Release Detection Systems - Groundwater and Vapor Monitoring Wells 29

Recordkeeping .. 32

Florida Department of Environmental Protection Rules and Forms .. 34

List of Acronyms .. 35

AST System Monthly Visual Inspection Checklist .. 36

UST System Monthly Visual Inspection Checklist .. 37
The Florida Department of Environmental Protection (FDEP) regulates the storage and operation of regulated substances that are stored in Underground Storage Tank (UST) systems or Aboveground Storage Tank (AST) systems throughout the State of Florida. USTs with capacities greater than 110 gallons and ASTs with capacities greater than 550 gallons are regulated and required to be registered with the FDEP.

FDEP or its designated county inspectors will visit your site to conduct compliance inspections periodically to verify these systems are operated and maintained according to code. Site access to the facility and individual storage tank systems and their components shall be provided for FDEP compliance and other follow-up inspections. This brochure provides guidance on UST and AST systems and their main components that are required to be maintained and monitored as part of the State regulatory inspection requirements.

Note:

Aboveground mineral acid storage tanks with individual capacities greater than 110 gallons containing hydrobromic acid (HBr), hydrochloric acid (HCl), hydrofluoric acid (HF), phosphoric acid (H₃PO₄) or sulfuric acid (H₂SO₄) are only subject to Rule 62-762.891, Florida Administrative Code (F.A.C.). Aboveground compression vessels and hazardous substance storage tanks with individual capacities greater than 110 gallons are only required to be registered with the FDEP.
UNDERGROUND STORAGE TANK SYSTEMS

Storage tank systems have three primary components: the tank, integral piping and fuel dispensing pump(s). All Underground Storage Tanks (UST) must be Double-Walled (DW) or installed within an FDEP approved secondary containment system. With the exception of dispenser islands and fueling dispenser pumps, most UST components are below grade and not readily visible or readily accessible. Site access to the facility and individual storage tank system and system components shall be provided for FDEP compliance inspections. The following system component photos or images are included to familiarize and assist the owner/operator with identifying critical components to be monitored.

TYPICAL DOUBLE-WALLED USTs

DW-Fiberglass UST Prior to Install

DW-Fiberglass Coated Steel Composite USTs During Installation

DW-Steel Tank with Cathodic Protection

DW-Steel Tank with Sacrificial Anodes Attached

DW-Fiberglass USTs On-site, Pending Installation

DW-Fiberglass USTs During Installation
DOUBLE-WALLED TANKS WITH RELEASE DETECTION METHOD OR DEVICE

A Release Detection (RD) method or device must be installed and monitored within the tank interstice (the space between the inner and outer tank walls) to detect a release and alert the operator. See Release Detection Systems Section (page 27) for options. On a monthly basis, but not exceeding 35 days, inspect and document the condition of any visible component of a storage tank system. For electronic release detection devices, inspect monthly, but not exceeding 35 days, for proper operation and maintain a record of the alarm history, sensor status, and testing results. Perform and maintain records of the annual operability test on the RD device to confirm it is operating in accordance with manufacturer's specifications. Below are examples of UST systems with various interstitial RD devices. If connected to an electronic alarm module, an alarm may be triggered when the inner or outer tank wall is breached.

Facility owners/operators are required to file an Incident Notification Form within 72 hours if the system or component is damaged and may have caused a release or discharge to occur. If a discharge is confirmed, file a Discharge Reporting Form within 24 hours of discovery of the discharge. (See Forms on page 34.)
SUBMERSIBLE PUMP/PIPING SUMP AND COMPONENTS

The pump/piping sump is typically the lowest point in the piping and connects on top of the UST, below grade, and typically houses the submersible turbine pump, RD sensors, electronic components, and associated pipe fittings and connections. To access the pump/piping sump, remove the manway sump cover with caution to avoid dropping it onto the sump containment cover, which may result in damages. Perform and document the following:

- Monthly, but not exceeding 35 days, check for liquid accumulation and sump integrity.
- Monthly, but not exceeding 35 days, visually inspect the pump head, pipe fittings and Line Leak Detector (LLD) for signs of corrosion, sweating and leaks. If monitored electronically, visually inspect every six (6) months.
- Perform a LLD operability test every 12 months to confirm the LLD functions as required.
- Perform an electronic sensor operability test every 12 months to confirm the sensor functions as required.
- Perform an integrity test on the pump/piping sumps by October 13, 2018, and every three years thereafter.
SUMP/CONTAINMENT COVER

The sump/containment cover must be fitted tightly to minimize the intrusion of storm water or groundwater into the sump containment, which can result in an accumulation of sufficient quantity to trip the release detection system alarm. Check for cracks or holes and after rain events confirm the sump cover is water tight. Liquids that accumulate in this area should be safely removed and must be properly disposed.

LINE LEAK DETECTOR

This device is located on the submersible turbine pump and is designed to automatically detect, restrict or shut off flow of fuel to the dispensers when a line leak is detected. There are two types of automatic Line Leak Detectors (LLD), mechanical or electronic. Perform the annual operability test on the LLD at intervals not exceeding 12 months in accordance with the manufacturer’s instructions to confirm the system is operating as designed.

TEST BOOT FITTINGS

This component is installed at the piping terminus to allow testing of the piping interstitial integrity. Test Boots or Reducing Tees may be used to pressure test the outer wall piping. The boots must be pulled back from the secondary lines, and the reducing tee test port must be unplugged after lines have been tested unless the piping system is designed with a closed interstice and release detection is conducted within the closed interstice. If this is not done, any leakage into the outer wall piping will not flow into the sump to trip the sensor and alert a leak from the primary piping.
ENTRY BOOT FITTING FOR DOUBLE-WALLED PIPING

This component is connected to accommodate the fuel piping entry into the pump, piping or dispenser sump. Visually check for damage, sweating, tears or cracks in these fittings.

FILL/SPILL CONTAINMENT (SPILL BUCKET) AND COMPONENTS

Fill areas are the connections where USTs are filled, typically by a gravity drop through a vertical or remote fill pipe to the UST. The spill bucket located on the fill pipe is used to capture excess fuel that may drain from the tanker truck fill hose after the fill hose is disconnected. Check for liquid accumulation and interior seam integrity. Any liquids that accumulate in the spill bucket should be safely removed and must be properly disposed. Perform integrity testing on double-walled spill buckets or containment systems that are being operated as such, by October 13, 2018, and every three years thereafter. Otherwise, perform integrity testing on all single-walled spill buckets or containment systems at intervals not exceeding 12 months.

FILL CAPS

Except during filling, the fill caps must remain on the fill pipe to prevent debris and surface/groundwater from entering the UST. The fill cap should be lockable and watertight, so check that the fill cap gasket is in place and secure.

SPILL RELEASE VALVE

The Spill Containment Release Valve is located inside the Spill Bucket and must only be used to release fuel from the spill bucket back into the tank (typically used during refueling of the tank). Any other liquids that accumulate in the spill bucket should be safely removed and must be properly disposed.
OVERFILL PROTECTION VALVE OR METHOD

This device or other approved method (such as a high level alarm system) is required on all USTs to prevent an overfill event during fuel deliveries. Depending on the device used, flow into the UST may be restricted or an alarm may sound at the 90 percent capacity and in general flow into the UST is stopped at the 95 percent capacity. Overfill protection devices must be tested every 12 months for proper operation.

Ball float valves may not be used when overfill protection is installed.

Ball Float or Vent Flow Restrictor; Installed

Automatic Tank Gauging (ATG) Probes

STAGE I DRY BREAK POPPET AND CAP WITH GASKET

This component is used to return gasoline vapors back to the delivery truck tank compartment and prevents the release of gasoline vapors into the atmosphere. Press the spring loaded valve in the center for spring compression reaction and to check for a tight seal. Poppet caps should be in place at all times except when storage tanks are being fueled. Ensure the cap gasket is secure and cap fits tightly onto the dry break poppet.
UNDERGROUND DOUBLE-WALLED PIPING ASSEMBLY AND COMPONENTS

All underground piping in contact with soil must be double-walled or installed inside an FDEP approved secondary containment system. Pipes should slope back to USTs to ensure that, in the case of any line break, product will flow back towards the UST and pumps/piping sumps. It is unlikely pipes will be visible for inspection except for the pipe fittings within the pumps/piping sump. Check for tears and breaks on the Flex Pipe and fittings located inside the pumps/piping sump.
ABOVEGROUND STORAGE TANK SYSTEMS

All Aboveground Storage Tanks (AST) must be double-walled or installed within an impervious secondary containment. With the exception of connected underground piping, most storage tank components of ASTs are above grade and readily visible or accessible. Aboveground piping not in contact with soil is not required to have secondary containment unless the piping extends over water. Site access to the facility and individual storage tank system and system components shall be provided for FDEP compliance inspections. The following system component photos and images are included here to assist the owner/operator in identifying critical components to be monitored.

TYPICAL ASTs

- Horizontal DW-AST
- Horizontal SW-AST within Secondary Containment
- Vertical SW-AST within Secondary Containment
- SW-AST with Dispenser within Secondary Containment
- Sub-base DW-Emergency Generator AST
- DW-AST with Dispenser within Containment
TANK ASSEMBLY AND COMPONENTS

ASTs must be installed on a sound foundation (e.g. reinforced concrete pad) that will provide the necessary support, strength and stability to withstand various environmental conditions. On a monthly basis, but not exceeding 35 days, visually inspect areas or components that can be inspected for any problems such as component corrosion or signs of a release. Record these monthly checks in a log to show that the inspections are being completed. Routine inspection will identify problems early, before they develop into serious issues, and will ensure the equipment works to reduce emissions and leaks.

DOUBLE-WALLED TANK WITH RELEASE DETECTION METHOD OR COMPONENTS

Double-walled ASTs must be equipped with a visual, mechanical or electronic Release Detection (RD) system located in the tank interstitial space (the space between the inner and outer tank walls) to detect a release and alert the operator of this incident. See Release Detection Systems Section (page 27) for options. On a monthly basis, but not exceeding 35 days, inspect the tank shell, pipes and fittings for leaks, usually demonstrated by uncontrolled corrosion/pitting or paint discoloration. Perform an annual operability test every 12 months on the RD system in accordance with the manufacturer’s instructions to confirm the system is operating as designed.

Facility owners/operators are required to file an Incident Notification Form within 72 hours if the system or component is damaged and may have caused a release or discharge to occur. If a discharge is confirmed, file a Discharge Reporting Form within 24 hours of discovery of the discharge. (See Forms on page 34.)

SINGLE-WALLED TANK INSIDE FIELD ERECTED SECONDARY CONTAINMENT OR DIKE

Single-walled ASTs shall have a secondary containment dike that is constructed to contain 110 percent of the largest tank capacity volume and is structurally sound to withstand hydrostatic forces of the contained volume of the liquid stored. AST secondary containment must be constructed of impervious materials and be sealed and properly coated to prevent any fuel or sweating on the ground area around the secondary containment. All aboveground fuel storage tanks must be labeled (by name) as to the specific type of fuel that is being stored in each tank (e.g., diesel, gasoline, waste oil, etc.). ASTs located inside a dike area are subject to storm water accumulation which must be managed and properly disposed. Check accumulated storm water for sheen or floating product before disposing. RD requirements are met when you perform monthly inspection checks for the following and record your findings.

1. Check tank coating integrity.
2. Check tank foundation and supports for cracks and signs of corrosion.
3. Check secondary containment integrity.
4. Inspect containment for liquid accumulation.
5. Check drain valve area for leaks (must be lockable and secured when not in use).
6. Check vent lines to ensure vent caps are in place.
7. Check for proper dimensions of containment volume (at least 110 percent of the largest tank volume).
8. Check roof integrity after a storm event for any leaks.
SINGLE-WALLED TANK INSIDE FIELD ERECTED SECONDARY CONTAINMENT OR DIKE

Check Tank Coating and Secondary Containment Integrity

Check Tank Foundation and Anchoring

Check Drain Valves for Leaks. Ensure they are Locked when Not in Use

Check for Proper Secondary Containment Dimensions

Check Roof for Integrity for Leaks, Especially after a Storm Event

Check Secondary Containment for Discharge or Liquid Accumulation
With the exception of an underground remote fill system or underground piping to dispensers or other endpoint equipment, pump sumps typically are not installed on ASTs. Suction or Submersible Turbine Pumps (STP) are used to deliver fuel to the dispensing or auxiliary equipment as needed. Suction pumps are typically located at the dispenser or auxiliary equipment (e.g., diesel power generator) while the STPs are located at and inside the AST.

Fill areas are the connections where ASTs are filled, sometimes under pressure through an aboveground vertical or remote fill pipe to the AST. Storage tanks that are loaded by trucks shall be installed with a spill containment system at each tank fill connection, except for tank fill connections located within dike field areas with secondary containment or within tank truck containment areas. The spill containment located at the fuel fill area is used to capture excess fuel that may drain from the tanker truck fill hose after the fill hose is disconnected. Check for liquid accumulation and interior seam integrity for corrosion and liquid tightness. Any liquids that accumulate in this area should be safely removed and must be properly disposed. Check for cracks or holes and after rain events to confirm the sump cover is water tight.
OVERFILL PROTECTION VALVE OR METHOD

An approved method of overfill protection (such as a visual gauge, liquid flow cutoff device or high level alarm ATG system) is required on ASTs to prevent an overfill event during fuel deliveries. AST tight fill overfill devices are designed for high pressure and high volume fueling. This device, located in the fill pipe inside the AST, shuts off product flow to the AST when the fuel tank level reaches 90 percent of its fill capacity. Perform an operability test on this device annually at intervals not exceeding 12 months in accordance with the manufacturer’s instructions to confirm the system is operating as designed.

FILL PIPE WITH CAP

Fill pipe connections are typically below the AST fuel level and will have fuel trapped in the line above this connection with a one-way check valve. Fill caps should be lockable and liquid tight. Check that the cover gasket is in place and secure to prevent leaks from the fuel line when not in use.
This valve is located inside the spill containment and must only be used to release fuel from the fill containment back into the tank (typically used during refueling of the tank). Any other liquids accumulated in this area should be safely removed and must be properly disposed.

AST Spill Containment with Release Valve on Tank Top

Stage I Dry Break Poppet and Cap with Gasket

This component is used to return gasoline vapors back to the delivery truck tank compartment. Press the spring loaded valve in the center for spring compression reaction. Poppet caps should be in place at all times except when storage tanks are being fueled. Ensure cap fits tightly.

Piping Assembly and Components

With the exception of piping over water, all aboveground piping not in contact with soil is not required to have secondary containment and is typically of metallic construction. On a monthly basis, but not exceeding 35 days, inspect these pipes and fittings for leaks, often demonstrated by uncontrolled corrosion/pitting or paint discoloration.
LINE LEAK DETECTOR

The Line Leak Detector (LLD) is located on the Submersible Turbine Pump (STP) and is designed to automatically detect, restrict or shut off flow of fuel to the dispensers when a line leak is detected. There are two types of automatic LLDs, mechanical or electronic. All pressurized small diameter integral piping that is in contact with the soil must be installed with LLDs and must be located downstream from the anti-siphon or solenoid valve, as applicable. LLDs are not required for piping that is not in contact with the soil. The LLD must be tested annually at intervals not exceeding 12 months for operability in accordance with the manufacturer’s instructions to confirm the system is operating as designed.

ANTI-SIPHON VALVE

An anti-siphon valve must be installed when the storage tank produces a gravity head on small diameter piping positioned below the storage tank product level to prevent a release of product in the event of a pipe/fitting leak or pipe rupture.
Aboveground Storage Tank Systems

AST System Diagram
COLOR CODING FOR FILL PORT COVERS

Fill ports, where USTs or ASTs are filled, require the fill covers be color-coded as illustrated below. This helps prevent accidental filling of the wrong fuel into the wrong tank. Ensure that the covers are maintained as required.

Hi-Grade (Premium) Fill Cover
Mid-Grade Fill Cover
Low-Grade Unleaded Fill Cover
Low Sulfur Diesel Fill Cover
Used Oil Fill Cover
High Sulfur Fill Cover
Stage I Dry Break Cover
No. 1 Fuel Oil Fill Cover
No. 2 Fuel Oil Fill Cover
Kerosene Fill Cover

ALCOHOL-BASED FUELS

M85 Ethanol Fill Cover
Hi-Grade Fill Cover
Mid-Grade Fill Cover
Low-Grade Fill Cover
Dispenser covers should be lockable and the operator must be available to provide access for inspection. When looking inside the dispenser, check the pipe fittings, emergency shut off (shear) valves (confirm you have one on each fuel line), fuel filters, dispenser sumps/liners or secondary containment, leak detection sensors (if any), and cathodic protection anodes (if any). (Note: your dispenser may not need all of these items.) Perform an integrity test on below-grade dispenser sumps by **October 13, 2018**, and every three years thereafter.

FUEL FILTERS

Check filter connection and condition on each fuel line for signs of leaks. Change when necessary.

DISPENSER ISLANDS

Keep traffic pathway free from open cans, containers or foreign objects to avoid costly accidents.
EMERGENCY SHUTOFF OR SHEAR VALVE FOR PRESSURIZED PIPING

Shear valves are used to prevent the release of fuel in the event the dispenser is dislodged or knocked off its foundation. Check the valve lever and the connection to the bracket, as shown. There should be one shear valve for each fuel line.

![Image of shear valves secured to brackets](image_url)

ELECTRONIC LEAK DETECTION SENSOR INSIDE DISPENSER SUMP

Check that the wire connections are secure. Check height and position of the sensor from the sump and secondary containment bottom, as per manufacturer’s instructions. The release detection system should alarm when there is a fuel leak or an excessive amount of liquid in the dispenser sump. Check for cracks and for an excessive amount of liquid in the sump. Liquid must be pumped out safely and properly disposed.

![Image of dispenser sump sensor](image_url)
STANDARD DISPENSER NOZZLES, HOSES AND APPURTEINANCES

Nozzles may develop leaks from constant use. Check for leaks and drips from the nozzle spout, hose and connections. Also check for excessive wear and cracking of the dispenser hoses.
VENT LINES ASSEMBLY AND COMPONENTS

Vent lines allow pressure within the tank to equalize when product is removed from or introduced into the tank. The Pressure-Vacuum (P/V) and standard vent valves are typically used at gasoline dispensing facilities. The P/V valves are required on gasoline UST/ASTs' vent lines per Chapter 62-252, F.A.C., Gasoline Vapor Control, and the fire codes, as applicable.

Note: Vent lines should extend a minimum of 12 feet above ground level, checked periodically and cleared of dust, rust or debris accumulation for proper functioning.

PRESSURE/VACUUM OR REGULAR/STANDARD VENT VALVES

This valve must be in place at all times per Chapter 62-252, F.A.C., Gasoline Vapor Control, and the fire codes, as applicable. This also prevents debris from falling into the tank.

Standard vents installed on the top of vent pipes from underground or aboveground diesel fuel storage tanks are always open to the atmosphere to allow any pressure or vacuum in the tank to vent.

STORAGE TANK VENT LINES

Each vent line is associated with one underground tank unless manifolded. A P/V or regular vent valve must be in place for each vent line.

VENT LINES MANIFOLD

Vent lines may be manifolded where this type of assembly requires only one P/V or regular vent valve.
Cathodic Protection Systems

Cathodic Protection (CP) is used to control the corrosion of metallic storage tank systems by connecting the metal components to be protected to a more easily corroded sacrificial anode. The sacrificial anode then corrodes instead of the protected components. For pipelines or field erected, steel ASTs in contact with soil, where sacrificial anodes may not be adequate, an external electrical power source (rectifier or impressed current) is used to provide sufficient current to protect the metal components.

Cathodic protection test stations are typically required and located close to the structure that is protected to allow periodic testing to confirm adequate corrosion protection is maintained on the system. Check the wire connection to the anode from the steel tank or pipe.

Cathodic protection systems must be tested by a corrosion professional. Factory installed galvanic anode systems are to be tested every three years. Impressed current systems typically have an Amp and Volt meter console that maintains a steady voltage-current supply to the protected structure. Check Volt-Amp readings every 60 days to confirm designed output readings are maintained. Impressed current systems and field installed sacrificial anode systems must be tested annually.
RELESE DETECTION SYSTEMS

All facilities are required to have internal or external release detection equipment or methods for their storage tank systems. On a monthly basis, but not exceeding 35 days, inspect and document the condition of any visible component of a storage tank system. Release detection, interstitial monitoring or overfill protection equipment or devices are required to have an annual operability test to determine if these devices are functioning as designed and in accordance with the manufacturer’s specification. (Please refer to Chapter 62-761 and Chapter 62-762, Florida Administrative Code, for more information.) Existing UST systems that store fuel solely for use by emergency power generators must meet release detection requirements by October 13, 2018.

Facility owners/operators are required to file an Incident Notification Form within 72 hours if the system or component is damaged and may have caused a release or discharge to occur. If a discharge is confirmed, file a Discharge Reporting Form within 24 hours of discovery of the discharge. (See Forms on page 34.) Following are various types of Internal and External Release Detection systems used.

INTERNAL RELEASE DETECTION SYSTEMS

An internal release detection system or method is designed and operated within the storage tank system to alert the owner/operator of a release or incident before the regulated substance stored is released or discharged to the environment. Internal release detection systems may be monitored via visual, mechanical, manual or electronic means to detect a release into the tank/pipe secondary containment or interstice. Visual or mechanical systems may use a float gauge, dip-stick or other visual means to monitor the interstice.

Visual, Mechanical or Manual Monitoring Release Detection Components Typically Used in ASTs

Electronic Interstitial Monitoring Typically Used in AST and UST Systems

Currently, there are electronic systems that provide continuous, intermittent or on-demand displays or printouts of operating and alarm status records. These may include in-line leak detector monitoring, pipe/dispenser sump monitoring, DW-UST/AST interstitial release detection monitoring and test history. Electronic interstitial monitoring systems detect product that leaks from the primary containment towards an interstitial monitor or probe/sensor located in the lowest level between the primary and secondary containment walls. Electronic interstitial monitoring systems may also detect water that enters the interstice through a breach in the secondary containment.
INTERNAL RELEASE DETECTION SYSTEMS

Release Detection Systems

Touch Screen Console

Audio/Visual Consoles

Installed Audio/Visual/Print Console

Discriminating Sump Sensors

Sensor Float in Pump Sump

Sensor Float in Dispenser Sump

Sensor for Brine-filled DW-UST

UST Wraparound Sensor and Cable

Hydrostatic Sensor Located in Tank Top Reservoir

Non-discriminating Interstitial Sensors

Discriminating Interstitial Sensors

Your Florida Petroleum Storage Tank Facility Inspection Guide
INTERNAL RELEASE DETECTION SYSTEMS

General System Checks and Recordkeeping for Release Detection

• Check any component that can be visually inspected monthly, but not exceeding 35 days, unless equipped with an electronic sensor. If equipped with an electronic sensor, visually inspect every six (6) months and record your findings.

• Electronic, mechanical or visual interstitial monitoring must be conducted for all DW-USTs, DW-ASTs and DW-underground piping.

• All release detection devices shall be tested annually at intervals not exceeding 12 months to ensure proper operation in accordance with manufacturer’s specifications.

EXTERNAL RELEASE DETECTION SYSTEMS - GROUNDWATER AND VAPOR MONITORING WELLS

External release detection systems monitor the presence of regulated substances in groundwater or soil that is in contact with the storage tank system. This type of release detection may be used only at existing facilities with single-walled USTs that are installed within an FDEP approved synthetic membrane liner or existing bulk product storage facility with specific FDEP approval. If you have Monitoring Well(s) (MW), it/they must be checked monthly, but not exceeding 35 days, for visible sheen, floating product or electronic alarms (when used) and the results recorded. Inspectors will always look for these results.
Compliance Monitoring Well, Casing and Cover
(Black triangle on white cover).

MW Casings, Covers

Compliance/Monitoring Well Containment with Grouting at Bottom
Routinely check grouting with a screwdriver or equivalent to ensure the grouting is intact. (Solid grouting is necessary to prevent surface runoff or spills from entering the soil through the well containment area.)

Compliance/Monitoring Well with Lockable Cap
Well cap must be kept locked or secured with lock or clips. Lock keys must be available onsite. The cap must be watertight. Provide suitable warning signs to fuel delivery drivers to prevent accidental fuel filling, e.g. MW - DO NOT FILL.

Various Compliance/Monitoring Well Caps

Compliance/Monitoring Well Pipe
This pipe must be a minimum of at least one inch above the surface of the grouting (to help prevent standing contaminated liquid from entering into the well when the cap is removed).
EXTERNAL RELEASE DETECTION SYSTEMS - GROUNDWATER AND VAPOR MONITORING WELLS

Compliance or Monitoring Well Acrylic Bailer with Cord

Keep the bailer and cord clean. When sampling wells, care should be taken if one well has signs of contamination (otherwise, wells will be cross contaminated). Bailers should be cleaned between each well sampling. A disposable bailer may be used.

Compliance or Monitoring Well Discriminating Electronic Probe

This system is designed to differentiate product or contamination from groundwater and/or background levels. Check the integrity of wires and connections.

Assessment/Monitoring Well

Assessment wells (similar to MW in design) are installed and used to collect, monitor and analyze groundwater samples for the presence of contaminants of concern. Assessment wells may be located onsite at locations greater than 10 feet from the storage tank system to track contaminant levels and groundwater flow as required. Assessment wells are differentiated by a solid white circle on a black cover.

Assessment Well

Compliance Well
IT’S GOOD FOR YOUR BUSINESS AND IT SAVES INSPECTION TIME!

Regulations require owners/operators to maintain certain records about their storage tank system for inspection. Inspectors will ask to see these records.

DISPLAY THE FOLLOWING DOCUMENTS WHERE EVERYONE CAN SEE THEM

- The current FDEP Registration Placard. Remember to check the placard for the proper address. The placard is issued annually following payment of the registration fees.
- Current local government permit(s), if applicable.

KEEP THE FOLLOWING RECORDS AT THE STORAGE TANK FACILITY ON FILE FOR EASY ACCESS AND REVIEW

Keep these Records for At Least Three Years

- All monthly visual inspection results of the condition of any storage tank system component that can be visually inspected and that contains, transfers or stores regulated substances.
- Electronic release detection equipment monthly function checks.
- All test data and results gathered during annual operability tests and integrity tests.
- Repair, operation and maintenance records.
- Records of the types of fuels stored per tank.

Keep these Records until Storage Tank System Closure

- Manufacturer’s instructions for operation, maintenance and testing release detection equipment.
- Demonstrating methods of financial responsibility.
- DRF, INF and results of all incident investigations.
- Installation, maintenance, inspections and testing of corrosion and cathodic protection systems.
- Storage system installations, replacements, recertification and upgrades.
- Closure integrity report, closure report or limited closure report, and release detection inspection report for out-of-service storage tank systems.
- Survey drawings of installed or relocated storage tank/piping systems signed and sealed by a Professional Engineer or Professional Land Surveyor licensed in the state of Florida.
- Records of current training certificates for designated Class A, B, and C operators shall be maintained for as long as the operators are designated for that facility.
- Records documenting compliance with compatibility of storage tank systems and system components storing regulated substances containing ethanol blends greater than 10 percent and biodiesel blends greater than 20 percent, as required.

Note: Facility operators must complete training and secure certification, no later than October 13, 2018, as required, to ensure the proper operation and maintenance of the storage tank system.
RECORDKEEPING

Discharge Reporting Form (DRF) Facility Registration Form Incident Notification Form (INF)

Equipment Registration Form Registration Placard Financial Mechanisms

UST Install and Removal Form Closure Integrity Evaluation Report Form Limited Closure Report Form
The following Rules and associated Forms may be accessed at the FDEP website
www.dep.state.fl.us/waste/categories/tanks/pages/rules

Rules

Chapter 62-761, F.A.C.
Underground Storage Tank Systems (USTs)
 » Rule Text

Chapter 62-762, F.A.C.
Aboveground Storage Tank Systems (ASTs)
 » Rule Text

Rule Forms

Underground Storage Tanks Systems
 » Discharge Report Form
 » Facility Registration Form
 » Financial Mechanisms Form
 » Alternative Requirement or Procedure Form
 » UST Installation and Removal Form
 » Incident Notification Form
 » Closure Integrity Evaluation Report Form
 » Limited Closure Report Form
 » Equipment Registration Form
 » UST Closure Site Check Process Flowchart
 » Instructions for Conducting a Site Check During UST Closure

Aboveground Storage Tanks Systems
 » Discharge Report Form
 » Facility Registration Form
 » Financial Mechanisms Form
 » Alternative Requirement or Procedure Form
 » Incident Report Form
 » Closure Integrity Evaluation Report Form
 » Limited Closure Report Form
 » Equipment Registration Form
 » Containment and Integrity Plan Certification Form
 » AST Closure Site Check Process Flowchart
 » Instructions for Conducting a Site Check During AST Closure

Self Service Registration Online

Storage Tank Registration Electronic Self Service Application (ESSA) Portal

Suggested AST and UST Monthly Checklists (Pages 36-37)
LIST OF ACRONYMS

ATG Automatic Tank Gauging
AST Aboveground Storage Tank
CP Cathodic Protection
DRF Discharge Report Form
DW Double-Walled
F.A.C. Florida Administrative Code
FDEP Florida Department of Environmental Protection
INF Incident Notification Form
LLD Line Leak Detector
MW Monitoring Well
P/V Pressure/Vacuum
RD Release Detection
STP Submersible Turbine Pump
SW Single-Walled
UST Underground Storage Tank
AST System Monthly Visual Inspection Checklist

Facility Name: __________________________ Date_________ Year_________
Facility ID: _____________________________ Tank # ________ Type: SW in secondary containment _____ DW_____

<table>
<thead>
<tr>
<th>AST SYSTEM</th>
<th>Standards Checklist</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Initials</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank</td>
<td>Tank exterior maintained, not corroded or damaged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overfill protection method check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overfill alarms functioning properly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Containment</td>
<td>Containment not damaged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clean, empty, and no water, product or debris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liquid removed from inside containment area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drain valve is closed, secured and not leaking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill Port/Spill Bucket</td>
<td>Fill cover is in good condition and properly color coded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fill cap is tightly sealed, gasket is in good condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clean, empty, no water, product or debris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piping</td>
<td>Anti-siphon valve in working order</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piping not in contact with soil/debris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piping exterior not corroded or damaged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release Detection</td>
<td>Electronic interstitial monitoring status not in alarm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Visual interstitial monitoring (Krueger gauge, stick, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electronic monitoring system check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispenser</td>
<td>Shear valves properly anchored</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sump clean, empty, and has no water, product or debris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piping maintained, not corroding or leaking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fittings not kinked, cracked, torn, or leaking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensor is in correct position</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piping not in contact with soil/debris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hoses, nozzles and breakaways not leaking or loose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments:
<table>
<thead>
<tr>
<th>UST System</th>
<th>Standards Checklist</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Initials</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Sump</td>
<td>Clean, empty, no water, product or debris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sump has no cracks or bulges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sump lid and gasket in good condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piping not corroding, leaking, kinked or swelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fittings not kinked, cracked, torn, or leaking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensor in correct position</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sump penetrations, entry boots maintained</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test boot pulled back or shrader valve stem removed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piping not in contact with soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill Port/Spill Bucket</td>
<td>Fill cover in good condition and properly color coded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fill caps tightly sealed & gasket in good condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clean, empty, no water, product or debris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plunger functioning properly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No swelling or cracks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overfill protection method present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overfill alarms functioning properly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage-I Vapor Recovery</td>
<td>Cover in good condition and properly color coded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dry break poppet cap properly sealed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piping has no leaks, not in contact with soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispenser</td>
<td>Piping has no leaks, not in contact with soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sump clean, empty, no water, product or debris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shear valves properly anchored and secure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathodic Protection System</td>
<td>Voltage reading within design range (value in comments)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impressed Current</td>
<td>AMP reading within design range (value in comments)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Is the system running</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release Detection</td>
<td>Electronic interstitial monitoring status not in alarm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Visual interstitial monitoring; vacuum, stick (value in comments)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electronic monitoring system status check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Facility Name: __________

Facility ID: __________

Tank # __________

Type: DW____SW inside a liner____Cathodic protection____

Month___________________

Year____________________
This handbook is provided as a general guide. For specific regulation requirements, informational videos, FDEP/Local county contact lists and this publication in Spanish refer to the website; Esta publicación está disponible en español en la siguiente página web: www.dep.state.fl.us/waste/categories/tanks/default.htm
REMEMBER

The State’s economic engine is driven by the State’s ecological engine, so help protect our ground and drinking water by properly maintaining your storage tank system.