Countywide Risk Assessment and Resilience Plan Resilience Steering Committee Meeting August 10, 2022 #### **Outline** - 1. Resilience Plan Progress Update - 2. Preliminary Data Request - 3. Hydrologic Modeling - a) Basics of south Florida water management - b) Broward County Future Conditions 100-Year Flood Elevation Map - c) Model adaptation for Resilience Plan - d) Event simulations, boundary conditions, outputs - 4. Introduction to Economic Modeling Methodology - 5. Other - 6. Adjournment 1 Resilience Plan Progress Update #### **Predecessor Work by the County has been instrumental** Revised (Future) Groundwater Maps > Revised Design Rainfall Amounts Revised (Future) 100 yr Flood Elevation Maps # Countywide Risk Assessment and Resilience Plan #### Tasks are progressing on schedule to date Current Focus is on Hydrologic Modeling and Economic Modeling Methodology #### Looking ahead ... - Continue Hydrologic Modeling - Complete Economic Modeling Methodology and begin implementation MIKE SHE- MIKE HYDRO RIVER - Complete Baseline Hydrologic Modeling - Continue Economic Modeling - Begin County Asset Analysis [RSC Meetings 10/12 & 12/14] | October 2022 | | | | | | | |--------------|--------|---------|-----------|----------|--------|----------------------| | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | | | | | | | | 1 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | 30 | 31 | | | | | © Mackfolmderhyse om | | December 2022 | | | | | | | |---------------|--------|---------|-----------|----------|--------|----------| | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | | | | | | 1 | 2 | 3 | | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | 25 | 26 | 27 | 28 | 29 | 30 | 31 | Preliminary Data Request #### **Preliminary Data Request** An introduction to the Plan was provided by Broward County on June 15th. All data requests were sent the last week of June. The program "HubSpot" and coordination with subconsultant Brizaga allowed for an efficient relay of information and smooth communication with requestees. • The data requests were different depending on the recipient of the request. Individual/personal follow up with certain stakeholders is on-going. #### **Responsiveness of Stakeholders** - Responsive - Awaiting response to Original Request. Reminder Email Sent. - Data Received - Request Noted. Expecting Data. - Data Not Readily Available - Data Within Hazen's System 3 Hydrologic Modeling a) Basics of south Florida water management # **Basis of south Florida water management** Water in south Florida flows south from Lake Okeechobee # **Basis of south Florida water management** # To know why they are needed, let's focus on Water and how it moves # **Two important concepts** 1)Water movement is defined by the availability of energy Higher Water Level = More Energy "Boundary Conditions" # Two important concepts 1)Water movement is defined by the availability of energy 2) Storage matters "Boundary Conditions" # Two important concepts 1)Water movement is defined by the availability of energy 2) Storage matters Higher Water Level = More Energy "Boundary Conditions" Groundwater Level at the beginning of the storm defines how much storage is available "Initial Conditions" # **Back to the Big Picture** #### **Gated Coastal Structure, effect on water levels** - Gated Structures are used to control water level upstream, preventing salt water from moving inland. - When sea level rises, the structures will be used to limit saltwater intrusion. - However, there is a price ... #### **Gated Coastal Structure, effect on water levels** The storage capacity will be reduced as the headwater elevation increases to limit saltwater intrusion as the sea level rises over time. # **Typical Stormwater Management System** 3 Hydrologic Modeling b) Broward County future conditions 100-year flood modeling mapping # **Broward County Future Conditions 100-Year Flood Elevation Map** - Future conditions (sea level rise, increased precipitation, etc) will require higher finished floor elevations in many cases - Increased finished floor elevations will enhance resilience # Example: Broward County Convention Center - 100 yr flood conditions - Storm surge - Key infrastructure elevated by 6 feet # **Broward County Future Conditions 100-Year Flood Elevation Map** 3 Hydrologic Modeling c) Model adaptation for Resilience Plan ## Model adaptation for Resilience Plan The MIKE SHE – MIKE Hydro River model used to develop the 100-yr flood elevation map is being refined to incorporate proposed adaptation strategies. These refinements include but are not limited to: - The increased density of canal networks represented in the model - The increased detail of Pervious / Impervious areas - Inclusion of additional control and conveyance infrastructure obtained from stakeholders - The use of higher resolution elevation data to represent Broward County - Updates to the future rainfall amounts based on recent studies - Updates to the boundary conditions (Sea Level Rise projections) # Model adaptation for Resilience Plan Increase density of canal network represented in the model Before Refinement After Refinement 3 Hydrologic Modeling d) Event simulations, boundary conditions, outputs **24 SCENARIOS** **30 SCENARIOS** MIKE SHE- MIKE HYDRO RIVER 4 Introduction to Economic Benefits Modeling Methodology #### Economic modeling will provide estimates of adaptation strategy benefits Economic benefits will be measured: - In dollars - By geographic area - In five-year increments - By type of beneficiary ... to help determine economic feasibility, cost-sharing arrangements, and funding options and strategies Adaptation strategy benefits are those expected to improve future wellbeing of Broward County residents - All benefits are relative to a baseline predicated on no adaptation measures - Overall Benefits are the differences in County: - Population, including vulnerable populations; - Housing stock and value; - Number of jobs and value; - Amenities and value - "With" the adaptation strategy. 36 **Ha<u>z</u>en** ## Types of benefits to be measured in dollars by location | Avoided Loss in: | Avoided Cost of: | Avoided Reduction in: | |--|-------------------------------------|---| | Resident and Business income | Emergency services | Property values | | Neighborhood amenities (a.k.a. | Property insurance premiums | Value of Recreation days (willingness-to-pay) | | Increases in quality and
availability of goods and | Mortgage interest rates | Value of Environmental amonities | | services) | Electricity cost to cool properties | Value of Environmental amenities (willingness-to-pay) | | Tax revenue to County and local governments | County borrowing and credit | Government services | # Economic contribution of adaptation strategies, as they mitigate climate change impacts provides dollar value of benefits #### First economic forecast – Baseline Conditions ("What if we do nothing?") #### **Hazard Exposure** Frequency, duration, extent of flooding – properties, roads, essential infrastructure Flood damage repair costs Heating degree days Socio-economic projections #### **First Party Loss** Building and asset damage Lost income from business interruption Cost of lost access to services Humanitarian (health) impacts #### **Indirect Impacts** Resident and business income Population, Jobs, Investment Economic Growth Beaches, recreation areas Natural environment Insurance availability and affordability Real estate values Tax revenue and government spending/Credit quality #### **Key Impact Metrics** Economic activity (by sector) Household impacts Asset values County finances Distribution of impacts #### **Baseline Conditions Forecast** #### 1 - Depth, duration and extent of flooding - Exposure: - properties (residential by type, commercial by sector) - roads - utilities - other infrastructure and assets - Scenarios and probabilities (current and up to 2070) # 2. Future socioeconomic exposures - Socio-economic projections - Demographics - Production - Land use #### 3. Direct damages - Building and asset damages - Lost income from business interruption - · Cost of loss of access to services - · Relief and recovery costs - Humanitarian (health) impacts # 4. Second-order impact modelling - Impact on resident and business income - · Impact on jobs #### 5. Long term economic modelling - Impacts on investment - Impacts on economic growth - Impacts on population #### 6. Willingness to pay modelling - · Impacts on natural capital - Other non-market impacts #### 7. Financial modelling - Impacts on insurance availability/ affordability - · Impacts on credit quality - · Impacts on property value - · Fiscal impacts #### 8. Equity Allocation of impacts across socioeconomic groups ## Required data inputs for the economic analysis County GIS data: https://bcgis.broward.org/GISData.htm | Modeling Effort | Data/models from County | Outside data/models | | | |--------------------------------|--|---|--|--| | Future socioeconomic exposures | Future land use, demographic,
and economic projections (2040
Plan) - GIS and Excel-based US Census data | Macroeconomic data sources Example: Federal Reserve growth forecasts | | | | Second order impact modeling | Spatial data on infrastructure assets | IMPLAN tableProduction capacityBehavioural parameters if available | | | | Financial modeling | Tax revenueSpendingContingent liabilitiesProperty values | Property sales tax income Mortgage interest rates calculations Adaptive Regional Input Output (ARIO) model inputs Hedonic models of property values Recreational and environmental value models | | | | Equity and allocation | Understanding key vulnerable groups | Net change in resident income from ARIO model Long-term economic modelling indicators Public health and education data | | | ## **Next Steps:** - 1. Feedback from the Steering Committee - Key sectors to emphasize - Vulnerable groups - Data sources - 2. Develop methods and data to estimate economic benefits of adaptation strategies # Thank you